A dual goniometer X-ray system was used to measure the reflectivity curve for a spherically bent quartz(211) crystal. An analysis of the dual goniometer instrument response function for the rocking curve width measurement was developed and tested against the actual measurements. The rocking curve was measured at 4510.8 eV using the Ti Kα1 characteristic spectral line. The crystal is the dispersion element for a high resolution spectrometer used for plasma studies. It was expected to have a very narrow rocking curve width. The analysis showed that we could measure the upper bound for the rocking curve width of the Qz(211) crystal. The upper bound was 58 μrad giving a lower bound for the instrument resolving power E/ΔE = 34 000. Greatly improved insight into the dual goniometer operation and its limitations was achieved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4952746 | DOI Listing |
Dalton Trans
January 2025
National Engineering Research Center for Domestic & Building Ceramics, School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China.
Due to a lack of spatially resolved characterization studies on statistical and individual particle microstructure at multiple scales, a knowledge gap exists in understanding the mechanistic link between rapid performance failure and atomic-scale structure degradation in single-crystalline Ni-rich battery cathodes. In a recent publication in , Huang developed a multi-crystal rocking curve technique (combining X-ray and electron microscopy to capture both statistical and individual lattice distortions), which enables multiscale observations and further proves that the accumulation of the unrecoverable lattice rotation in cathodes upon repeated cycling exacerbates mechanical failure and electrochemical decay. The elucidation of failure mechanisms in single-crystalline cathodes offers valuable insights into the development of long-lasting and high-energy-density cathodes in next-generation batteries, encompassing strategies to mitigate lattice rotation and enhance lattice structure tolerance against lattice distortion within individual particles.
View Article and Find Full Text PDFNanoscale
January 2025
Center for Nanoscience and Engineering, Indian Institute of Science, Bengaluru, 560012, India.
Int J Cardiol
January 2025
Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China; Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, Liaoning, China. Electronic address:
Background: This study aimed to evaluate the effects of apical rocking(ApRock) and septal flash(SF) on left ventricular function in complete left bundle branch block(CLBBB) patients with normal left ventricular ejection fraction(LVEF), with the goal of improving risk stratification and clinical decision-making for these patients.
Methods: Seventy-five CLBBB patients with normal LVEF, and 30 age- and sex-matched controls were enrolled in the study. Three independent physicians visually assessed the presence of ApRock and SF and left ventricular global longitudinal strain(LVGLS) and the standard deviation of time-to-peak strain in 18 segments(Ts-SD) were evaluated using two-dimensional speckle-tracking echocardiography.
Small Methods
October 2024
Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China.
Van der Waals (vdW) heterostructures comprising of transition metal dichalcogenides (TMDs) and hexagonal boron nitride (h-BN) are promising building blocks for novel 2D devices. The vdW epitaxy provides a straightforward integration method for fabricating high-quality TMDs/h-BN vertical heterostructures. In this work, the vdW epitaxy of high-quality single-crystal HfSe on epitaxial h-BN/sapphire substrates by chemical vapor deposition is demonstrated.
View Article and Find Full Text PDFNat Synth
June 2024
Department of Chemistry, University of Victoria, Victoria, British Columbia Canada.
Controlling the linear growth rate, a critical factor that determines crystal quality, has been a challenge in solution-grown single crystals due to complex crystallization kinetics influenced by multiple parameters. Here we introduce a flux-regulated crystallization (FRC) method to directly monitor and feedback-control the linear growth rate, circumventing the need to control individual growth conditions. When applied to metal halide perovskites, the FRC maintains a stable linear growth rate for over 40 h in synthesizing CHNHPbBr and CsPbBr single crystals, achieving outstanding crystallinity (quantified by a full width at half-maximum of 15.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!