Interruption of electronically excited Xe dimer formation by the photoassociation of Xe(6s[3/2]2)-Xe(5p(6) (1)S0) thermal collision pairs.

J Chem Phys

Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801, USA.

Published: June 2016

The diatomic collisional intermediate responsible for the formation of an electronically excited molecule by teratomic recombination has been observed in both the spectral and temporal domains by laser spectroscopy. We report experiments demonstrating thermal Xe(6s[3/2]2)-Xe(5p(6) (1)S0) atomic collision pairs to be the immediate precursor to the formation of Xe2 (∗)(a(3)Σu (+),A(1)Σu (+)) by the three body process: Xe(∗)(6s) + 2Xe ⟶ Xe2 (∗) + Xe, where the asterisk denotes an excited electronic state. Photoassociating Xe(6s)-Xe atomic pairs by free ⟵ free transitions of the collision complex interrupts the production of the electronically excited Xe dimer, thereby suppressing Xe2 spontaneous emission in the vacuum ultraviolet (VUV, λ ∼ 172 nm, A(1)Σu (+)→X(1)Σg (+)). Intercepting Xe(6s)-Xe pairs before the complex is stabilized by the arrival of the third atom in the teratomic collision process selectively depletes the pair population in a specific Franck-Condon region determined by the probe laser wavelength (λ). Measurements of the variation of VUV emission suppression with λ provide a spectral signature of the [Xe(6s[3/2]2) - Xe((1)S0)](∗) complex and map the probe laser wavelength onto the thermal energy (ϵ″) of the incoming collision pairs.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4953864DOI Listing

Publication Analysis

Top Keywords

electronically excited
12
collision pairs
12
excited dimer
8
xe6s[3/2]2-xe5p6 1s0
8
probe laser
8
laser wavelength
8
collision
5
pairs
5
interruption electronically
4
excited
4

Similar Publications

Spiking Flip-Flop Memory in Resonant Tunneling Diode Neurons.

Phys Rev Lett

December 2024

University of Strathclyde, Institute of Photonics, SUPA Dept of Physics, Glasgow, United Kingdom.

We report a spiking flip-flop memory mechanism that allows controllably switching between neural-like excitable spike-firing and quiescent dynamics in a resonant tunneling diode (RTD) neuron under low-amplitude (<150  mV pulses) and high-speed (ns rate) inputs pulses. We also show that the timing of the set-reset input pulses is critical to elicit switching responses between spiking and quiescent regimes in the system. The demonstrated flip-flop spiking memory, in which spiking regimes can be controllably excited, stored, and inhibited in RTD neurons via specific low-amplitude, high-speed signals (delivered at proper time instants) offers high promise for RTD-based spiking neural networks, with the potential to be extended further to optoelectronic implementations where RTD neurons and RTD memory elements are deployed alongside for fast and efficient photonic-electronic neuromorphic computing and artificial intelligence hardware.

View Article and Find Full Text PDF

The phonon inverse Faraday effect describes the emergence of a dc magnetization due to circularly polarized phonons. In this work we present a microscopic formalism for the phonon inverse Faraday effect. The formalism is based on time-dependent second order perturbation theory and electron phonon coupling.

View Article and Find Full Text PDF

Electronic quenching of sulfur induced by argon collisions.

Phys Chem Chem Phys

January 2025

Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France.

An accurate potential energy model, explicitly designed for studying scattering and treating the spin-orbit and nonadiabatic couplings on an equal footing, is proposed for the S + Ar system. The model is based on the Effective Relativistic Coupling by Asymptotic Representation (ERCAR) approach, building the geometry dependence of the spin-orbit interaction a diabatisation scheme. The resulting full diabatic model is used in close-coupling calculations to compute inelastic scattering cross sections for de-excitation from the S(D) fine structure level into the P multiplet.

View Article and Find Full Text PDF

Time-resolved spectroscopy is an important tool for probing photochemically induced nonequilibrium dynamics and energy transfer. Herein, a method is developed for the ab initio simulation of vibronic spectra and dynamical processes. This framework utilizes the recently developed nuclear-electronic orbital time-dependent configuration interaction (NEO-TDCI) approach, which treats all electrons and specified nuclei quantum mechanically on the same footing.

View Article and Find Full Text PDF

Mitochondria-localized dinuclear iridium(III) complexes for two-photon photodynamic therapy.

Dalton Trans

January 2025

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.

Photodynamic therapy (PDT), as a non-invasive cancer treatment, offers significant advantages including high temporal-spatial selectivity, minimal surgical intervention, and low toxicity, thereby garnering considerable research interest from across the world. In this study, we have developed a series of dinuclear cyclometalated Ir(III) complexes as potential two-photon photodynamic anticancer agents. These Ir(III) complexes demonstrate significant two-photon absorption (2PA) cross-sections ( = 66-166 GM) and specifically target mitochondria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!