Chemical accuracy is difficult to achieve for systems with transition metal atoms. Third row transition metal atoms are particularly challenging due to strong electron-electron correlation in localized d-orbitals. The Cr2 molecule is an outstanding example, which we previously treated with highly accurate auxiliary-field quantum Monte Carlo (AFQMC) calculations [W. Purwanto et al., J. Chem. Phys. 142, 064302 (2015)]. Somewhat surprisingly, computational description of the isoelectronic Mo2 dimer has also, to date, been scattered and less than satisfactory. We present high-level theoretical benchmarks of the Mo2 singlet ground state (X(1)Σg (+)) and first triplet excited state (a(3)Σu (+)), using the phaseless AFQMC calculations. Extrapolation to the complete basis set limit is performed. Excellent agreement with experimental spectroscopic constants is obtained. We also present a comparison of the correlation effects in Cr2 and Mo2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4954245 | DOI Listing |
J Chem Theory Comput
January 2025
Department of Chemistry, Rice University, Houston, Texas 77005-1892, United States.
Generalized Hartree-Fock (GHF) is a long-established electronic structure method that can lower the energy (compared to spin-restricted variants) by breaking physical wave function symmetries, namely and . After an exposition of GHF theory, we assess the use of GHF trial wave functions in phaseless auxiliary field quantum Monte Carlo (ph-AFQMC-G) calculations of strongly correlated molecular systems including symmetrically stretched hydrogen rings, carbon dioxide, and dioxygen. Imaginary time propagation is able to restore symmetry and yields energies of comparable or better accuracy than CCSD(T) with unrestricted HF and GHF references, and consistently smooth dissociation curves─a remarkable result given the relative scalability of ph-AFQMC-G to larger system sizes.
View Article and Find Full Text PDFJ Chem Phys
October 2024
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
ipie is a Python-based auxiliary-field quantum Monte Carlo (AFQMC) package that has undergone substantial improvements since its initial release [Malone et al., J. Chem.
View Article and Find Full Text PDFPhys Rev Lett
October 2024
Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520, USA.
The two-species Fermi gas with attractive short-range interactions in two spatial dimensions provides a paradigmatic system for the understanding of strongly correlated Fermi superfluids in two dimensions. It is known to exhibit a BEC to BCS crossover as a function of ln(k_{F}a), where a is the scattering length, and to undergo a Berezinskii-Kosterlitz-Thouless superfluid transition below a critical temperature T_{c}. However, the extent of a pseudogap regime in the strongly correlated regime of ln(k_{F}a)∼1, in which pairing correlations persist above T_{c}, remains largely unexplored with controlled theoretical methods.
View Article and Find Full Text PDFPhys Rev Lett
September 2024
School of Mathematics and Physics, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
We introduce a class of 2D sigma models which are parametrized by a function of one variable. In addition to the physical field g, these models include an auxiliary field v_{α} which mediates interactions in a prescribed way. We prove that every theory in this family is classically integrable, in that it possesses an infinite set of conserved charges in involution, which can be constructed from a Lax representation for the equations of motion.
View Article and Find Full Text PDFJ Chem Phys
October 2024
Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!