Communication: Visualization and spectroscopy of defects induced by dehydrogenation in individual silicon nanocrystals.

J Chem Phys

Department of Chemistry and Biochemistry, Materials Science Institute, Oregon Center for Optical, Molecular and Quantum Science, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA.

Published: June 2016

We present results of a scanning tunneling spectroscopy (STS) study of the impact of dehydrogenation on the electronic structures of hydrogen-passivated silicon nanocrystals (SiNCs) supported on the Au(111) surface. Gradual dehydrogenation is achieved by injecting high-energy electrons into individual SiNCs, which results, initially, in reduction of the electronic bandgap, and eventually produces midgap electronic states. We use theoretical calculations to show that the STS spectra of midgap states are consistent with the presence of silicon dangling bonds, which are found in different charge states. Our calculations also suggest that the observed initial reduction of the electronic bandgap is attributable to the SiNC surface reconstruction induced by conversion of surface dihydrides to monohydrides due to hydrogen desorption. Our results thus provide the first visualization of the SiNC electronic structure evolution induced by dehydrogenation and provide direct evidence for the existence of diverse dangling bond states on the SiNC surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4954833DOI Listing

Publication Analysis

Top Keywords

induced dehydrogenation
8
silicon nanocrystals
8
reduction electronic
8
electronic bandgap
8
electronic
5
communication visualization
4
visualization spectroscopy
4
spectroscopy defects
4
defects induced
4
dehydrogenation
4

Similar Publications

We demonstrate the participation of cobalt in a photoinduced ligand-to-metal charge transfer process, which leads to the formation of ligand-based radical species and enables both homo and hetero cross-dehydrogenative coupling of indoles with decent yield at room temperature. This photo-induced LMCT process is substantiated by a series of mechanistic investigations.

View Article and Find Full Text PDF

Boldenone and Testosterone Production from Phytosterol via One-Pot Cascade Biotransformations.

J Fungi (Basel)

November 2024

Federal Research Center, Pushchino Center for Biological Research of Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Prospekt Nauki, 5, 142290 Pushchino, Moscow Region, Russia.

Testosterone (TS) and its 1(2)-dehydrogenated derivative boldenone (BD) are widely used in medicine, veterinary science and as precursors in organic synthesis of many therapeutic steroids. Green production of these compounds is possible from androstenedione (AD) enzymatically, or from phytosterol (PS) using fermentation stages. In this study, the ascomycete sp.

View Article and Find Full Text PDF

The recent detection of benzonitrile (CHCN) in the interstellar medium is one of the most fascinating discoveries in astrochemistry and molecular astrophysics. However, the mechanism of its formation in interstellar ices remains unclear. Here, we report the first evidence for the direct synthesis of benzonitrile through the radiation-induced transformations of an isolated CH···HCN complex in inert rigid media at cryogenic temperature (4.

View Article and Find Full Text PDF

Asymmetric Rh-O-Co bridge sites enable superior bifunctional catalysis for hydrazine-assisted hydrogen production.

Chem Sci

December 2024

Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China

Hydrazine-assisted water splitting is a promising strategy for energy-efficient hydrogen production, yet challenges remain in developing effective catalysts that can concurrently catalyze both the hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR) in acidic media. Herein, we report an effective bifunctional catalyst consisting of Rh clusters anchored on CoO branched nanosheets (Rh-CoO BNSs) synthesized an innovative arginine-induced strategy. The Rh-CoO BNSs exhibit unique Rh-O-Co interfacial sites that facilitate charge redistribution between Rh clusters and the CoO substrate, thereby optimizing their valence electronic structures.

View Article and Find Full Text PDF

The electrochemically induced reaction between alkenes, bearing an allylic hydrogen atom, and -hydroxyphthalimide was investigated. Cross-dehydrogenative C-O coupling with phthalimide--oxyl radical, derived from -hydroxyphthalimide, occurs instead of oxidation of the allylic site, with the formation of a carbonyl group or functionalization of the double C=C bond. The discovered transformation proceeds in an undivided electrochemical cell equipped with a carbon felt anode and a platinum cathode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!