Architecture of chaotic attractors for flows in the absence of any singular point.

Chaos

Université de Lyon, ENTPE, Laboratoire Génie Civil et Bâtiment, 3 Rue Maurice Audin, F-69518 Vaulx-en-Velin Cedex, France.

Published: June 2016

Some chaotic attractors produced by three-dimensional dynamical systems without any singular point have now been identified, but explaining how they are structured in the state space remains an open question. We here want to explain-in the particular case of the Wei system-such a structure, using one-dimensional sets obtained by vanishing two of the three derivatives of the flow. The neighborhoods of these sets are made of points which are characterized by the eigenvalues of a 2 × 2 matrix describing the stability of flow in a subspace transverse to it. We will show that the attractor is spiralling and twisted in the neighborhood of one-dimensional sets where points are characterized by a pair of complex conjugated eigenvalues. We then show that such one-dimensional sets are also useful in explaining the structure of attractors produced by systems with singular points, by considering the case of the Lorenz system.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4954212DOI Listing

Publication Analysis

Top Keywords

one-dimensional sets
12
chaotic attractors
8
singular point
8
attractors produced
8
systems singular
8
sets points
8
points characterized
8
architecture chaotic
4
attractors flows
4
flows absence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!