In this paper, transverse vibrations of an electrostatically actuated thin flexible cantilever perturbed by low-speed air flow are studied using both experiments and numerical modeling. In the experiments, the dynamic characteristics of the cantilever are studied by supplying a DC voltage with an AC component for electrostatic forcing and a constant uniform air flow around the cantilever system for aerodynamic forcing. A range of control parameters leading to stable vibrations are established using a dimensionless operating parameter that is the ratio of the induced and the free stream velocities. Numerical results are validated with experimental data. Assuming the amplitude of vibrations are small, then a non-linear dynamic Euler-Bernoulli beam equation with viscous damping and gravitational effects is used to model the equation of motion. Aerodynamic forcing is modelled as a temporally sinusoidal and uniform force acting perpendicular to the beam length. The forcing amplitude is found to be proportional to the square of the air flow velocity. Numerical results strongly agree with the experiments predicting accurate vibration amplitude, displacement frequency, and quasi-periodic displacement of the cantilever tip.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4954025DOI Listing

Publication Analysis

Top Keywords

air flow
12
thin flexible
8
aerodynamic forcing
8
electrostatic aerodynamic
4
aerodynamic forced
4
vibrations
4
forced vibrations
4
vibrations thin
4
flexible electrode
4
electrode quasi-periodic
4

Similar Publications

Flow Electroreductive Nickel-Catalyzed Cyclopropanation of Alkenes Using gem-Dichloroalkanes.

Angew Chem Int Ed Engl

January 2025

University of Amsterdam Faculty of Science: Universiteit van Amsterdam Faculteit der Natuurwetenschappen Wiskunde en Informatica, Van't Hoff Institute for Molecular Science, PO Box 94157, Science Park 904, 1090 GD, Amsterdam, NETHERLANDS, KINGDOM OF THE.

Cyclopropanes are valuable motifs in organic synthesis, widely featured in pharmaceuticals and functional materials. Herein, we report an efficient electrochemical methodology for the cyclopropanation of alkenes, leveraging a nickel-catalyzed process in continuous-flow. The developed protocol demonstrates broad substrate scope, accommodating both electron-rich and electron-poor alkenes with high functional group tolerance.

View Article and Find Full Text PDF

Complete Breakup of Liquids into Ultrafine Droplets by Grid Turbulence.

Nano Lett

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

Ultrafine droplets are crucial in materials processing and nanotechnology, with applications in nanoparticle preparation, water evaporation, nanodrug delivery, nanocoating, among numerous others. While the potential of turbulent gas flow to enhance liquid breakup is acknowledged, constructing turbulence-driven atomizers for ultrafine droplets remains challenging. Herein, we report the innovation of grid-turbulence atomization (GTA), which employs a rotating mesh to deliver liquid and an air knife to spray ultrafine droplets.

View Article and Find Full Text PDF

A solvent-free, thermal extraction method for analysis of polycyclic aromatic hydrocarbons (PAHs) in gas phase airborne samples was developed. A fully automated thermal desorber (TD) coupled with highly selective and sensitive gas chromatography-tandem mass spectrometry (GC-MS/MS) was used to determine the concentration of trace level PAHs. Air sampling was conducted to tune the sampling and analytical conditions.

View Article and Find Full Text PDF

In this paper, we present a new computational framework for the simulation of airway resistance, the fraction of exhaled nitric oxide, and the diffusion capacity for nitric oxide in healthy and unhealthy lungs. Our approach is firstly based on a realistic representation of the geometry of healthy lungs as a function of body mass, which compares well with data from the literature, particularly in terms of lung volume and alveolar surface area. The original way in which this geometry is created, including an individual definition of the airways in the first seven generations of the lungs, makes it possible to consider the heterogeneous nature of the lungs in terms of perfusion and ventilation.

View Article and Find Full Text PDF

Not too much, not too little. Titrating flow rate to minimise inspiratory effort during helmet CPAP: A bench study.

Pulmonology

December 2025

Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei tintori, Monza, Italy.

Background: Non-invasive helmet respiratory support is suitable for several clinical conditions. Continuous-flow helmet CPAP systems equipped with HEPA filters have become popular during the recent Coronavirus pandemic. However, HEPA filters generate an overpressure above the set PEEP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!