Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An easy, efficient, and safe process is developed to metallize mesoporous silicon (PSi) with Cu from the decomposition of a solution of mesitylcopper (CuMes) in an imidazolium-based ionic liquid (IL), [C1C4Im][NTf2]. The impregnation of a solution of CuMes in IL affords the deposition of metallic islands not only on the surface but also deep within the pores of a mesoporous Si layer with small pores below 10 nm. Therefore, this process is well suited to efficiently and completely metallize PSi layers. An in-depth mechanistic study shows that metal deposition is due to the reduction of CuMes by surface silane groups rather than by Si oxidation as observed in aqueous or water-containing media. This could open a new route to the chemical metallization of PSi by less-noble metals difficult to attain by a conventional displacement reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.6b00650 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!