Association of alkali metal cations with phosphatidylcholine liposomal membrane surface.

Eur Biophys J

Institute of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland.

Published: March 2017

Interactions of alkali metal cations (Li, Na, K, Cs) with phosphatidylcholine (PC) liposomal membranes were investigated through experimental studies and theoretical considerations. Using a microelectrophoresis technique, charge densities of experimental membrane surfaces were measured as a function of the pH of electrolyte solutions. Equilibria between the PC liposomal membranes and monovalent ions were mathematically analyzed and described quantitatively through a previously proposed theoretical model. Association constants between functional groups of PC and the studied ions were determined and used to define theoretical curves of membrane surface charge density versus pH. Theoretical and experimental data were compared to verify the model. The PC membrane was found to have the highest affinity for lithium ions, among the ions tested.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5306196PMC
http://dx.doi.org/10.1007/s00249-016-1150-1DOI Listing

Publication Analysis

Top Keywords

alkali metal
8
metal cations
8
cations phosphatidylcholine
8
phosphatidylcholine liposomal
8
membrane surface
8
liposomal membranes
8
association alkali
4
membrane
4
liposomal membrane
4
surface interactions
4

Similar Publications

Delocalized multicenter bonds play a crucial role in clusters with a planar hypercoordinate center(s), making it difficult for highly electronegative elements, especially halogen atoms, to achieve the planar hypercoordinate arrangement. Herein, we introduce a star-like cluster Br6Li5-, whose global minimum contains a planar pentacoordinate bromine (ppBr). In this cluster, the central ppBr atom coordinates with five alkali metal Li atoms, which in turn bridge an equal number of electronegative Br atoms in the periphery, leading to the formation of the binary cluster Br6Li5-.

View Article and Find Full Text PDF

Electrolytic manganese residue (EMR) is a solid waste generated during the production of electrolytic manganese metal through wet metallurgy, accumulating in large quantities and causing significant environment pollution. Due to its high sulfate content, EMR can be utilized to prepare supersulfate cement when combined with Ground Granulated Blast furnace Slag (GGBS). In this process, GGBS serves as the primary raw material, EMR acts as the sulfate activator, and CaO powder, along with trace amounts of cement, functions as the alkali activator.

View Article and Find Full Text PDF

To investigate the influence of alkali metal compounds in different forms on the sintering mineralization process of iron ore, the basic sintering characteristics of iron ore with alkali metal contents ranging from 0 to 4% were measured using the micro-sintering method, and the influence mechanism was analyzed using thermodynamic analysis and first-principles calculations. The results showed that (1) the addition of KCl/NaCl increased the lowest assimilation temperature (LAT) and the index of liquid-phase fluidity (ILF), while that of KCO/NaCO decreased the LAT but increased the ILF of iron ore. (2) The pores formed by the volatilization of KCl/NaCl suppressed the diffusion of Fe and Ca, which inhibited the formation of silico-ferrite of calcium and aluminum (SFCA).

View Article and Find Full Text PDF

Potassium, an essential inorganic cation, is crucial for the growth of oil crops like L. Given the scarcity of potassium in soil, enhancing rapeseed's potassium utilization efficiency is of significant importance. This study identified 376 potassium utilization genes in the genome of ZS11 through homologous retrieval, encompassing 7 functional and 12 regulatory gene families.

View Article and Find Full Text PDF

Selenium (Se) plays a crucial role in ameliorating the negative impact of abiotic stress. The present study was performed to elucidate the efficacy of soil treatment of Se in reducing salt-induced stress in Carthamus tinctorius L. In this study, three different levels of NaSeO (0, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!