Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The quantitative concepts used to reason about gene regulation largely derive from bacterial studies. We show that this bacterial paradigm cannot explain the sharp expression of a canonical developmental gene in response to a regulating transcription factor (TF). In the absence of energy expenditure, with regulatory DNA at thermodynamic equilibrium, information integration across multiple TF binding sites can generate the required sharpness, but with strong constraints on the resultant "higher-order cooperativities." Even with such integration, there is a "Hopfield barrier" to sharpness; for n TF binding sites, this barrier is represented by the Hill function with the Hill coefficient n. If, however, energy is expended to maintain regulatory DNA away from thermodynamic equilibrium, as in kinetic proofreading, this barrier can be breached and greater sharpness achieved. Our approach is grounded in fundamental physics, leads to testable experimental predictions, and suggests how a quantitative paradigm for eukaryotic gene regulation can be formulated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4930556 | PMC |
http://dx.doi.org/10.1016/j.cell.2016.06.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!