Aims: We aimed to explore axonal excitability parameters in patients with diabetes mellitus (DM) and polyneuropathy (PNP) as well as those without PNP.
Methods: We used the short TROND protocol by QTRAC to measure axonal excitability parameters (strength-duration time constant (SDTC), rheobase, etc.) in 12 healthy subjects and 14 DM patients with PNP and 10 DM patients without PNP. The short TROND protocol was performed before and after 20min of deep hyperventilation in healthy subjects and patients with DM. Also, venous blood pH and partial pressure of O2 and CO2 were recorded before hyperventilation (HPV) and after 20min of HPV. A "hyperventilation score" was evaluated before and after HPV.
Results: When the values of DM with PNP group and control group before HPV were compared, SDTC and latency were statistically significant. Comparing the values of the excitability parameters after HPV showed statistically significant changes in the SDTC, rheobase, and refractoriness at 2.5ms in controls and DM patients without PNP. HPV resulted in no changes in SDTC in DM patients with PNP.
Conclusion: The results of this study suggest that patients with DM and healthy subjects have different responses to HPV, and pH changes have different effects on diabetic PNP compared with healthy controls and DM patients without PNP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.diabres.2016.04.058 | DOI Listing |
Phys Rev Lett
December 2024
University of Michigan, Department of Physics, Ann Arbor, Michigan 48109, USA.
Anisotropy is a fundamental property of both material and photonic systems. The interplay between material and photonic anisotropies, however, has hardly been explored due to the vastly different length scales. Here we demonstrate exciton polaritons in a 2D antiferromagnet, CrSBr, coupled with an anisotropic photonic crystal cavity, where the spin, atomic, and photonic anisotropies are strongly correlated.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147 USA.
The endo-lysosomal system plays a crucial role in maintaining cellular homeostasis and promoting organism fitness. The pH of its acidic compartments is a crucial parameter for proper function, and it is dynamically influenced by both intracellular and environmental factors. Here, we present a method based on fluorescence lifetime imaging microscopy (FLIM) for quantitatively analyzing the pH profiles of acidic endolysosomal compartments in diverse types of primary mammalian cells and in live organism .
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Naval Group Research, 199 av. Pierre-Gilles de Gennes, Ollioulles, 83190 France.
The theory of similitudes provides simple laws by which the response of one system (usually of small size) can be used to predict the response of another system (usually larger). This paper establishes the exact conditions and laws of similitude for the vibrations and acoustic radiation of a panel immersed in a heavy fluid and excited by a turbulent boundary layer. Previous work on vibroacoustic similitude had not considered the problem of a panel radiating in heavy fluid, for which the radiation impedance of the structure must be scaled.
View Article and Find Full Text PDFIn this paper, we study the propagation and time-evolution behavior of superfluorescence in an overdamped semiconductor ring microcavity. By introducing a re-coupling mechanism between the unidirectionally propagating superfluorescence and the cooperative exciton state with a specified Gaussian spatial distribution, we can compress the width of the photoluminescence (PL) pulse in both temporal and spatial scales. Using realistic parameters from perovskite superlattice materials, we observe that the maximum intensity increases twofold compared to the ordinary radiation behavior observed in planar microcavity systems.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States.
The bonding and spectroscopic properties of LaX and AcX (X = O and F) diatomic molecules were studied by high-level ab initio CCSD(T) and SO-CASPT2 electronic structure calculations. Bond dissociation energies (BDEs) were calculated at the Feller-Peterson-Dixon (FPD) level. Potential energy curves and spectroscopic constants for the lowest-lying spin-orbit Ω states were obtained at the SO-CASPT2/aQ-DK level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!