Purpose: The purpose of this study was to evaluate longitudinal gene expression patterns by retinal imaging using a modified custom-built confocal laser-scanning microscope in experimental rats after intravitreal injection of recombinant adeno-associated virus 2 (rAAV2-green fluorescent protein [GFP]).
Methods: Ten 9-week-old Wistar rats were divided into two groups: experimental group (group 1) that received a rAAV2-GFP intravitreal injection and control group (group 2) that received a vehicle. After anesthesia using a Zoletil intraperitoneal injection, 8 μL rAAV2-GFP in group 1 or vehicle in group 2 was injected intravitreally using a 33-G Hamilton syringe. In vivo fluorescence retinal images were acquired under anesthesia at 2, 4, 6, and 13 days after rAAV or vehicle delivery.
Results: Differences in GFP fluorescence were identified starting from day 2 after the intravitreal injection of rAAV2-GFP in group 1. Between days 4 and 6, the intensity and area of fluorescence in the retina began to increase and peaked at day 13. Based on the pattern of GFP expression, the axon of the nerve fiber layer ganglion cell was identified. In group 2, eyes treated with the vehicle showed a small amount of autofluorescence in a limited area for up to 2 weeks, with no increase in intensity during this period.
Conclusions: In vivo retinal imaging confirmed gene expression within 2 weeks after the intravitreal injection of rAAV2-GFP. Gene transfer and expression in the rat retina occurs quickly in 2 days and appears to peak within 2 weeks of gene delivery. In vivo retinal imaging may be a useful noninvasive tool to continuously monitor gene expression in the retina over time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.15-18862 | DOI Listing |
Sci Rep
January 2025
School of Computer Science, Hunan First Normal University, Changsha, 410205, China.
Retinal blood vessels are the only blood vessels in the human body that can be observed non-invasively. Changes in vessel morphology are closely associated with hypertension, diabetes, cardiovascular disease and other systemic diseases, and computers can help doctors identify these changes by automatically segmenting blood vessels in fundus images. If we train a highly accurate segmentation model on one dataset (source domain) and apply it to another dataset (target domain) with a different data distribution, the segmentation accuracy will drop sharply, which is called the domain shift problem.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Study Center for Ocular Diseases, Guangzhou, China.
Photoreceptors are specialized neurons at the core of the retina's functionality, with optical accessibility and exceptional sensitivity to systemic metabolic stresses. Here we show the ability of risk-free, in vivo photoreceptor assessment as a window into systemic health and identify shared metabolic underpinnings of photoreceptor degeneration and multisystem health outcomes. A thinner photoreceptor layer thickness is significantly associated with an increased risk of future mortality and 13 multisystem diseases, while systematic analyses of circulating metabolomics enable the identification of 109 photoreceptor-related metabolites, which in turn elevate or reduce the risk of these health outcomes.
View Article and Find Full Text PDFAm J Ophthalmol
January 2025
Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, USA. Electronic address:
Oestrogen and progesterone fluctuate cyclically in women throughout their adult lives. Although these hormones cross the blood-retinal barrier and bind to intraocular receptors, their effects remain unclear. We present the first review to date on associations between posterior pole structures-specifically the macula, choroid, and optic disc-and both the menstrual cycle and post-menopausal period, utilising multimodal imaging techniques in healthy adult non-pregnant women.
View Article and Find Full Text PDFJ Anat
January 2025
Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil.
Non-image forming (NIF) pathways, a specialized branch of retinal circuitry, play a crucial role supporting physiological and behavioral processes, including circadian rhythmicity. Among the NIF regions, the dorsal raphe nucleus (DRN), a midbrain serotonergic cluster of neurons, is also devoted to circadian functions. Despite indirectly send photic inputs to circadian centers and modulating their activities, little is known about the organization of retina-DRN circuits in primate species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!