A new biarticular actuator design facilitates control of leg function in BioBiped3.

Bioinspir Biomim

Lauflabor Locomotion Laboratory, Technische Universität Darmstadt, Germany. School of ECE, College of Engineering, University of Tehran, Iran.

Published: July 2016

Bioinspired legged locomotion comprises different aspects, such as (i) benefiting from reduced complexity control approaches as observed in humans/animals, (ii) combining embodiment with the controllers and (iii) reflecting neural control mechanisms. One of the most important lessons learned from nature is the significant role of compliance in simplifying control, enhancing energy efficiency and robustness against perturbations for legged locomotion. In this research, we investigate how body morphology in combination with actuator design may facilitate motor control of leg function. Inspired by the human leg muscular system, we show that biarticular muscles have a key role in balancing the upper body, joint coordination and swing leg control. Appropriate adjustment of biarticular spring rest length and stiffness can simplify the control and also reduce energy consumption. In order to test these findings, the BioBiped3 robot was developed as a new version of BioBiped series of biologically inspired, compliant musculoskeletal robots. In this robot, three-segmented legs actuated by mono- and biarticular series elastic actuators mimic the nine major human leg muscle groups. With the new biarticular actuators in BioBiped3, novel simplified control concepts for postural balance and for joint coordination in rebounding movements (drop jumps) were demonstrated and approved.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-3190/11/4/046003DOI Listing

Publication Analysis

Top Keywords

actuator design
8
control
8
control leg
8
leg function
8
legged locomotion
8
human leg
8
joint coordination
8
biarticular
5
leg
5
biarticular actuator
4

Similar Publications

Rapid thrombolysis is very important to reduce complications caused by vascular blockage. A promising approach for improving thrombolysis efficiency is utilizing the permanent magnetically actuated locomotion of nanorobots. However, the thrombolytic drug transportation efficiency is challenged by in-plane rotating locomotion and the insufficient drug penetration limits further improvement of thrombolysis.

View Article and Find Full Text PDF

A Modular Engineered DNA Nanodevice for Precise Profiling of Telomerase RNA Location and Activity.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.

Increased telomerase activity has been considered as a conspicuous sign of human cancers. The catalytic cores of telomerase involve a reverse transcriptase and the human telomerase RNA (hTR). However, current detection of telomerase is largely limited to its activity at the tissue and single-cell levels.

View Article and Find Full Text PDF

Transparent thin-film heaters have sparked great interest in both the scientific and industrial sectors due to their critical role in various technologies, including smart windows, displays, actuators, and sensors. In this review, we summarize the structural design, fabrication methods, properties, and materials used in thin-film heaters. We also discuss methods to improve their efficiency and recent advancements in the field, and provide insights into the market size, growth, and future outlook for thin-film heaters.

View Article and Find Full Text PDF

Biomimetic Linkage Mechanism Robust Control for Variable Stator Vanes in Aero-Engine.

Biomimetics (Basel)

December 2024

The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

This work addresses the position tracking control design of the stator vane driven by electro-hydrostatic actuators facing uncertain aerodynamic disturbances. Rapidly changing aerodynamic conditions impose complex disturbance torques on the guide vanes. Consequently, a challenging task is to enhance control precision in complex uncertain environments.

View Article and Find Full Text PDF

Worms are organisms characterized by simple structures, low energy consumption, and stable movement. Inspired by these characteristics, worm-like soft robots demonstrate exceptional adaptability to unstructured environments, attracting considerable interest in the field of biomimetic engineering. The primary challenge currently involves improving the motion performance of worm-like robots from the perspectives of actuation and anchoring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!