Background: Certain hand activities cause deformation and displacement of the median nerve at the carpal tunnel due to the gliding motion of tendons surrounding it. As smartphone usage escalates, this raises the public's concern whether hand activities while using smartphones can lead to median nerve problems.
Objective: The aims of this study were to 1) develop kinematic graphs and 2) investigate the associated deformation and rotational information of median nerve in the carpal tunnel during hand activities.
Methods: Dominant wrists of 30 young adults were examined with ultrasonography by placing a transducer transversely on their wrist crease. Ultrasound video clips were recorded when the subject performing 1) thumb opposition with the wrist in neutral position, 2) thumb opposition with the wrist in ulnar deviation and 3) pinch grip with the wrist in neutral position. Six still images that were separated by 0.2-second intervals were then captured from the ultrasound video for the determination of 1) cross-sectional area (CSA), 2) flattening ratio (FR), 3) rotational displacement (RD) and 4) translational displacement (TD) of median nerve in the carpal tunnel, and these collected information of deformation, rotational and displacement of median nerve were compared between 1) two successive time points during a single hand activity and 2) different hand motions at the same time point. Finally, kinematic graphs were constructed to demonstrate the mobility of median nerve during different hand activities.
Results: Performing different hand activities during this study led to a gradual reduction in CSA of the median nerve, with thumb opposition together with the wrist in ulnar deviation causing the greatest extent of deformation of the median nerve. Thumb opposition with the wrist in ulnar deviation also led to the largest extent of TD when compared to the other two hand activities of this study. Kinematic graphs showed that the motion pathways of median nerve during different hand activities were complex.
Conclusion: We observed that the median nerve in the carpal tunnel was rotated, deformed and displaced during the hand activities that people may be performed when using a smartphone, suggesting an increased risk of carpal tunnel syndrome (CTS). In addition, the kinematic graphs of median nerve developed in the present study provide new clues for further studies on the pathophysiology of CTS, and alerting smartphone users to establish proper postural habits when using handheld electronic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4930216 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158455 | PLOS |
Sci Rep
January 2025
Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
Patients with Moyamoya disease (MMD) exhibit significant alterations in brain structure and function, but knowledge regarding gray matter networks is limited. The study enrolled 136 MMD patients and 99 healthy controls (HCs). Clinical characteristics and gray matter network topology were analyzed.
View Article and Find Full Text PDFJ Clin Neurosci
January 2025
Department of Ultrasonic Medicine, Fudan University Affiliated Huashan Hospital, No 12, Middle Wulumuqi Road, Shanghai 200040, China. Electronic address:
Objective: This prospective observational study aimed to assess the effectiveness of B-mode ultrasound, color-coded Doppler, and shear-wave elastography in predicting intracranial pressure (ICP) and their capability to evaluate the efficacy of ICP lowering therapy.
Materials And Methods: Forty-eight neuro-critical care patients were enrolled and categorized into 2 groups based on ICP measurements obtained through external ventricular drainage: the intracranial hypertension (IH) and normal ICP groups. The optic nerve (ON) sheath diameter (ONSD), end diastolic velocity, peak systolic velocity, resistance index of the central retinal artery (CRA), and Young's modulus (YM) of the ON were recorded after external ventricular drainage placement and following ICP lowering treatment in the IH group.
J Clin Neurosci
January 2025
Department of Neurological Surgery and Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University. Electronic address:
Background And Objective: Radiosurgery can serve as a primary, adjuvant, or salvage treatment modality for cavernous sinus tumors (CST), providing high tumor control. However, particularly with cavernous sinus expansion, there may be insufficient distance from the optic apparatus to perform radiosurgery safely. The internal carotid artery adjacent to the distal dural ring (ICAddr), when enhancing similarly to the CST, can be difficult to delineate, and can lead to over-contouring of target volume near the optic nerve and therefore increasing the risk of radiation-induced optic toxicity.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
Background: Anatomical variations of the recurrent motor branch (RMB) are at risk of injury during carpal tunnel release procedures. Previous studies have visualized the RMB using ultrasound (US) and magnetic resonance imaging (MRI) but have not compared the imaging capabilities of the two. Previous investigations have overlooked two specific types of carpal tunnel syndrome (CTS): simultaneous compression of the median nerve and the RMB and isolated compression of the latter.
View Article and Find Full Text PDFPhotochem Photobiol
January 2025
Departamento de Fisioterapia, Universidade Federal dos Vales Do Jequitinhonha e, Diamantina, Minas Gerais, Brazil.
This study investigates the effects of photobiomodulation (PBM) with a 660-nm laser on nerve regeneration and muscle morphometry following median nerve axonotmesis in rats. Sixteen Wistar rats were divided into a control group and laser-treated group, with the latter receiving 10 applications of PBM (660 nm; 20 mW; 10 J/cm; 0.4 J; and 20 s) over 2 weeks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!