Bath engineering, which utilizes coupling to lossy modes in a quantum system to generate nontrivial steady states, is a tantalizing alternative to gate- and measurement-based quantum science. Here, we demonstrate dissipative stabilization of entanglement between two superconducting transmon qubits in a symmetry-selective manner. We utilize the engineered symmetries of the dissipative environment to stabilize a target Bell state; we further demonstrate suppression of the Bell state of opposite symmetry due to parity selection rules. This implementation is resource efficient, achieves a steady-state fidelity F=0.70, and is scalable to multiple qubits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.116.240503 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States.
The simulation of non-Markovian quantum dynamics plays an important role in the understanding of charge and exciton dynamics in the condensed phase environment, yet such a simulation remains computationally expensive on classical computers. In this work, we develop a variational quantum algorithm that is capable of simulating non-Markovian quantum dynamics on quantum computers. The algorithm captures the non-Markovian effect by employing the Ehrenfest trajectories and Monte Carlo sampling of their thermal distribution.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Robotics and Mechatronics, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea.
Triboelectric nanogenerators (TENGs) have gained significant attention for ability to convert mechanical energy into electrical energy. As the applications of TENG devices expand, their safety and reliability becomes priority, particularly where there is risk of fire or spontaneous combustion. Flame-retardant materials can be employed to address these safety concerns without compromising the performance and efficiency of TENGs.
View Article and Find Full Text PDFAnn Biomed Eng
January 2025
Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK.
Purpose: Head acceleration events (HAEs) are a growing concern in contact sports, prompting two rugby governing bodies to mandate instrumented mouthguards (iMGs). This has resulted in an influx of data imposing financial and time constraints. This study presents two computational methods that leverage a dataset of video-coded match events: cross-correlation synchronisation aligns iMG data to a video recording, by providing playback timestamps for each HAE, enabling analysts to locate them in video footage; and post-synchronisation event matching identifies the coded match event (e.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
University of Bath, Claverton Down, Bath, BA2 7AY, UK.
Branched peptide-based materials draw inspiration from dendritic structures to emulate the complex architecture of native tissues, aiming to enhance the performance of biomaterials in medical applications. These innovative materials benefit from several key features: they exhibit slower degradation rates, greater stiffness, and the ability to self-assemble. These properties are crucial for maintaining the structural integrity and functionality of the materials over time.
View Article and Find Full Text PDFNat Hum Behav
January 2025
Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands.
Science is crucial for evidence-based decision-making. Public trust in scientists can help decision makers act on the basis of the best available evidence, especially during crises. However, in recent years the epistemic authority of science has been challenged, causing concerns about low public trust in scientists.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!