The biological antioxidant activity of vitamin E has been related to the stability of the tocopheroxyl radical. Using anion photoelectron imaging and electronic structure calculations, the four tocopheroxyl components of vitamin E have been studied in the gas phase and have yielded the adiabatic electron affinity of the α-, β/γ-, and δ-tocopheroxyl radicals. Using these values, the bond dissociation enthalpy of the O-H bond of tocopherol has been estimated and is consistent with previous studies and with the trends in biological activity. Differences in the photoelectron angular distributions have been interpreted to result from changes in the symmetry of the molecular orbitals from which the electron was detached.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.6b05271 | DOI Listing |
Molecules
January 2025
Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan.
Palladium-doped silver nanoclusters (NCs) have been highlighted for their unique physicochemical properties and potential applications in catalysis, optics, and electronics. Anion-directed synthesis offers a powerful route to control the morphology and properties of these NCs. Herein, we report a novel Pd-doped Ag NC, [Pd(H)Ag(S){SP(OPr)}] (), synthesized through the inclusion of sulfide and hydride anions.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemistry, Laboratory of Catalysis, Environment and Materials, State University of Rio Grande Do Norte, 59610-210, Mossoró, Rio Grande Do Norte, Brazil.
In this study, a novel synthesis approach was employed to create the KIT-6/TiO photocatalyst with different ratios of Si/Ti. The results of the X-ray diffraction revealed that incorporating TiO with the anatase phase maintained the mesoporous structure of KIT-6 (Korean Institute of Technology 6). The scanning electron microscope and transmission electron microscope images exhibited unobstructed mesopores, validating their anchoring within the internal structure of the support.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
The sensitive detection of inflammatory biomarkers in gingival crevicular fluid (GCF) is highly desirable for the evaluation of periodontal disease. Luminol-based electrochemiluminescence (ECL) immunosensors offer a promising approach for the fast and convenient detection of biomarkers. However, luminol's low ECL efficiency under neutral conditions remains a challenge.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States.
The cyano-cyclopentadiene molecule (CN-CH) has attracted significant interest since its detection in the interstellar medium, but the radical (CN-CH) and anionic (CN-CH) forms of cyano-cyclopentadiene have not been studied. The cyano-cyclopentadienyl radical (CN-Cp) has a strong dipole moment, rendering it an ideal system for vibrational and rotational spectroscopy. We report an investigation of the cryogenically cooled cyano-cyclopentadienide anion (CN-Cp) using high-resolution photoelectron imaging, photodetachment spectroscopy, and resonant photoelectron imaging.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Marquette University School of Dentistry, Milwaukee, Wisconsin, USA.
In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!