Plant protein inhibitors counteract the activity of cell wall-degrading enzymes (CWDEs) secreted by pathogens to breach the plant cell-wall barrier. Transgenic plants expressing a single protein inhibitor restrict pathogen infections. However, since pathogens secrete a number of CWDEs at the onset of infection, we combined more inhibitors in a single wheat genotype to reinforce further the cell-wall barrier. We combined polygalacturonase (PG) inhibiting protein (PGIP) and pectin methyl esterase inhibitor (PMEI), both controlling the activity of PG, one of the first CWDEs secreted during infection. We also pyramided PGIP and TAXI-III, a xylanase inhibitor that controls the activity of xylanases, key factors for the degradation of xylan, a main component of cereal cell wall. We demonstrated that the pyramiding of PGIP and PMEI did not contribute to any further improvement of disease resistance. However, the presence of both pectinase inhibitors ensured a broader spectrum of disease resistance. Conversely, the PGIP and TAXI-III combination contributed to further improvement of Fusarium head blight (FHB) resistance, probably because these inhibitors target the activity of different types of CWDEs, i.e., PGs and xylanases. Worth mentioning, the reduction of FHB symptoms is accompanied by a reduction of deoxynivalenol accumulation with a foreseen great benefit to human and animal health.

Download full-text PDF

Source
http://dx.doi.org/10.1094/MPMI-05-16-0089-RDOI Listing

Publication Analysis

Top Keywords

cwdes secreted
8
cell-wall barrier
8
pgip taxi-iii
8
disease resistance
8
pyramiding pvpgip2
4
pvpgip2 taxi-iii
4
taxi-iii pvpgip2
4
pvpgip2 pmei
4
pmei enhances
4
resistance
4

Similar Publications

Characterization of Major Cell-Wall-Degrading Enzymes Secreted by spp. Isolate Z1-1N Causing Postharvest Fruit Rot in Kiwifruit in China.

Biology (Basel)

December 2024

Key Laboratory City for Study and Utilization of Ethnic Medicinal Plant Resources of Western Guizhou Province, Liupanshui Normal University, Liupanshui 553004, China.

Pathogen-induced fruit decay is a significant threat to the kiwifruit industry, leading to considerable economic losses annually. The cell-wall-degrading enzymes (CWDEs) secreted by these pathogens are crucial for penetrating the cell wall and accessing nutrients. Among them, species are recognized as major causal agents of soft rot in kiwifruit, yet their pathogenic mechanisms are not well understood.

View Article and Find Full Text PDF

Global Analysis of microRNA-like RNAs Reveals Differential Regulation of Pathogenicity and Development in Causing Apple Replant Disease.

J Fungi (Basel)

December 2024

State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.

This study investigated the expression profiles of microRNA-like RNAs (milRNAs) in (), a key pathogen causing Apple replant disease (ARD), across spore to mycelium formation stages. Using small RNA sequencing (sRNA-seq) and bioinformatics, we identified and analyzed milRNAs, revealing their targeting of 2364 mRNAs involved in 20 functional categories, including metabolic and cellular processes, based on gene ontology (GO) analysis. An analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that these mRNAs are related to carbohydrate and amino acid metabolism pathways.

View Article and Find Full Text PDF

Secreted Xylanase PstXyn1 Contributes to Stripe Rust Infection Possibly by Overcoming Cell Wall Barrier and Suppressing Defense Responses in Wheat.

J Agric Food Chem

January 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.

f. sp. () secretes a plethora of cell wall-degrading enzymes (CWDEs) to facilitate fungal invasion during infection.

View Article and Find Full Text PDF

Secretory Proteins Are Involved in the Parasitism of Melon by During the Attachment Stage.

Plants (Basel)

November 2024

Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi 832003, China.

Parasitic plants represent a significant challenge in global agriculture, with Broomrape (/ spp.) being a notable example of a holoparasitic species that targets the roots of host plants. This study employed comparative transcriptomics to investigate the mechanisms underlying the parasitism of on melon, focusing on both resistant and susceptible interactions.

View Article and Find Full Text PDF
Article Synopsis
  • Postharvest rot in kiwifruit, caused by fungal pathogens, leads to major economic losses, particularly affecting 'Hongyang' variety in China.
  • The study isolated the P3-1W strain, identifying key enzymes (CWDEs) like cellulase and pectin methylesterases that peak two days post-infection.
  • Genome sequencing of P3-1W revealed over 15,000 protein-coding genes and 857 carbohydrate-active enzymes, providing crucial information on its pathogenic capabilities.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!