Syntaxin 5 Overexpression and β-Amyloid 1-42 Accumulation in Endoplasmic Reticulum of Hippocampal Cells in Rat Brain Induced by Ozone Exposure.

Biomed Res Int

Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico.

Published: March 2017

Oxidative stress is a risk factor for Alzheimer's disease and it is currently accepted that oxidative damage precedes the overproduction of A42 peptide. We have reported that ozone causes oxidative stress inducing neurodegeneration in the brain of rats. It is associated with A42 overproduction and intracellular accumulation in hippocampus. Organelles like mitochondria, intracellular membranes, and endoplasmic reticulum have been identified as sites of A42 production and accumulation affecting cellular metabolism. However whether ozone exposure induces overproduction and/or accumulation of A42 in endoplasmic reticulum has not been studied. We evaluated this effect in the endoplasmic reticulum of hippocampal cells of rats exposed chronically to low doses of ozone (0.25 ppm) at 7, 15, 30, 60, and 90 days. The effect of the presence of A42 in endoplasmic reticulum was analyzed evaluating the expression of the chaperone Syntaxin 5. Our results show an accumulation of A42 peptide in this organelle. It was observed by immunofluorescence and by WB in endoplasmic fractions from hippocampal cells of rats at 60 and 90 days of treatment. Significant overexpression of the chaperone Syntaxin 5 at 60 and 90 days of treatment was observed ((⁎) P < 0.05). These results indicate that the exposure to environmental pollutants could be involved as a risk factor for neurodegenerative processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912997PMC
http://dx.doi.org/10.1155/2016/2125643DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
20
hippocampal cells
12
reticulum hippocampal
8
ozone exposure
8
oxidative stress
8
risk factor
8
a42 peptide
8
accumulation a42
8
a42 endoplasmic
8
cells rats
8

Similar Publications

Artificial enforcement of the unfolded protein response (UPR) reduces disease features in multiple preclinical models of ALS/FTD.

Mol Ther

January 2025

Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA. Electronic address:

Amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting in a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress.

View Article and Find Full Text PDF

Clinical treatment options for triple-negative breast cancer (TNBC) are currently limited to chemotherapy because of a lack of effective therapeutic targets. Recent evidence suggests that long noncoding RNAs (lncRNAs) encode bioactive peptides or proteins, thereby playing noncanonical yet significant roles in regulating cellular processes. However, the potential of lncRNA-translated products in cancer progression remains largely unknown.

View Article and Find Full Text PDF

The Multidrug and toxin compound extrusion gene GhTT12 promotes the accumulation of both proanthocyanidins and anthocyanins in Gossypium hirsutum.

Plant Physiol Biochem

January 2025

Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China. Electronic address:

The pigments present in the fibers of naturally colored cotton provide excellent antibacterial and environmentally friendly properties, making these colored fibers increasingly favored by the textile industry and consumers. Proanthocyanidins (PAs), the critical pigments responsible for the color of brown cotton fiber, are produced on the endoplasmic reticulum and subsequently transported to the vacuole for polymerization and/or storage. Previous studies have identified GhTT12 as a potential transmembrane transporter of PAs in Gossypium hirsutum, with GhTT12 being a homolog of Arabidopsis Transparent Testa 12 (TT12).

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Proteinuria and tubular cells: Plasticity and toxicity.

Acta Physiol (Oxf)

February 2025

Department of Medicine, Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.

Aim: Proteinuria is the most robust predictive factors for the progression of chronic kidney disease (CKD), and interventions targeting proteinuria reduction have shown to be the most effective nephroprotective treatments to date. While glomerular dysfunction is the primary source of proteinuria, its consequences extend beyond the glomerulus and have a profound impact on tubular epithelial cells. Indeed, proteinuria induces notable phenotypic changes in tubular epithelial cells and plays a crucial role in driving CKD progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!