Haloperidol is a classic antipsychotic drug known for its propensity to cause extrapyramidal symptoms due to blockade of dopamine D2 receptors in the striatum. Interest in medicinal uses of cannabis is growing. Cannabis sativa has been suggested as a possible adjunctive in treatment of Parkinson's disease. The present study aimed to investigate the effect of repeated administration of an extract of Cannabis sativa on catalepsy and brain oxidative stress induced by haloperidol administration in mice. Cannabis extract was given by subcutaneous route at 5, 10 or 20 mg/kg (expressed as Δ(9)-tetrahydrocannabinol) once daily for 18 days and the effect on haloperidol (1 mg/kg, i.p.)-induced catalepsy was examined at selected time intervals using the bar test. Mice were euthanized 18 days after starting cannabis injection when biochemical assays were carried out. Malondialdehyde (MDA), reduced glutathione (GSH) and nitric oxide (the concentrations of nitrite/nitrate) were determined in brain and liver. In saline-treated mice, no catalepsy was observed at doses of cannabis up to 20 mg/kg. Mice treated with haloperidol at the dose of 1 mg/kg, exhibited significant cataleptic response. Mice treated with cannabis and haloperidol showed significant decrease in catalepsy duration, compared with the haloperidol only treated group. This decrease in catalepsy duration was evident on days 1-12 after starting cannabis injection. Later the effect of cannabis was not apparent. The administration of only cannabis (10 or 20 mg/kg) decreased brain MDA by 17.5 and 21.8 %, respectively. The level of nitric oxide decreased by 18 % after cannabis at 20 mg/kg. Glucose in brain decreased by 20.1 % after 20 mg/kg of cannabis extract. The administration of only haloperidol increased MDA (22.2 %), decreased GSH (25.7 %) and increased brain nitric oxide by 44.1 %. The administration of cannabis (10 or 20 mg/kg) to haloperidol-treated mice resulted in a significant decrease in brain MDA and nitric oxide as well as a significant increase in GSH and glucose compared with the haloperidol-control group. Cannabis had no significant effects on liver MDA, GSH, nitric oxide in saline or haloperidol-treated mice. It is concluded that cannabis improves catalepsy induced by haloperidol though the effect is not maintained on repeated cannabis administration. Cannabis alters the oxidative status of the brain in favor of reducing lipid peroxidation, but reduces brain glucose, which would impair brain energetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928014PMC

Publication Analysis

Top Keywords

nitric oxide
20
cannabis
17
cannabis mg/kg
16
cannabis sativa
12
administration cannabis
12
brain
9
oxidative stress
8
mice
8
haloperidol
8
induced haloperidol
8

Similar Publications

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

This study successfully synthesised and characterised composites combining chitosan (CH), carboxymethyl cellulose (CMC), and various flavonoids (Fla). This innovative approach demonstrates the potential for developing functional materials with antioxidant and food preservation properties. The composites CH-Fla-CMC (1-5) was characterised using advanced techniques such as FT-IR, UV-Vis, XRD, SEM, TEM, and TGA, providing robust data on their structural, morphological, and thermal properties.

View Article and Find Full Text PDF

Lung tissue from human patients and murine models of sickle cell disease pulmonary hypertension (SCD-PH) show perivascular regions with excessive iron accumulation. The iron accumulation arises from chronic hemolysis and extravasation of hemoglobin (Hb) into the lung adventitial spaces, where it is linked to nitric oxide depletion, oxidative stress, inflammation, and tissue hypoxia, which collectively drive SCD-PH. Here, we tested the hypothesis that intrapulmonary delivery of hemopexin (Hpx) to the deep lung is effective at scavenging heme-iron and attenuating the progression of SCD-PH.

View Article and Find Full Text PDF

Tumor-targeted near-infrared/ultraviolet-triggered photothermal/gas therapy nanoplatform for effective cancer synergistic therapy.

Colloids Surf B Biointerfaces

January 2025

Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

The integration of photothermal therapy (PTT) and gas therapy (GT) on a nanoplatform shows great potential in cancer treatment. In this paper, a tumor-targeted near-infrared/ultraviolet (NIR/UV) triggered PTT/GT synergistic therapeutic nanoplatform, PB-CD-PLL(NF)-FA, was designed based on Prussian blue (PB) nanoparticles, 5-chloro-2-nitrobenzotrifluoro (NF)-grafted polylysine (PLL(NF)), and folic acid (FA). PB serves as a core to load PLL(NF) through host-guest interaction and can further modify FA.

View Article and Find Full Text PDF

A novel genetically encoded indicator for deciphering cytosolic and mitochondrial nitric oxide in live cells.

Biochem Biophys Res Commun

January 2025

Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China. Electronic address:

Nitric oxide (NO) has been highlighted as a key gaseous signaling molecule in the body, playing a central role in various physiological and pathological processes. However, a comprehensive analysis of NO metabolism dynamics in living cells remains a significant challenge. To address this, we have developed and characterized a novel genetically encoded NO fluorescence sensor, GefiNO, to investigate NO metabolism dynamics in living cells and subcellular organelles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!