Sex-specific responses to climate change in plants alter population sex ratio and performance.

Science

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA. Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA.

Published: July 2016

Males and females are ecologically distinct in many species, but whether responses to climate change are sex-specific is unknown. We document sex-specific responses to climate change in the plant Valeriana edulis (valerian) over four decades and across its 1800-meter elevation range. Increased elevation was associated with increased water availability and female frequency, likely owing to sex-specific water use efficiency and survival. Recent aridification caused male frequency to move upslope at 175 meters per decade, a rate of trait shift outpacing reported species' range shifts by an order of magnitude. This increase in male frequency reduced pollen limitation and increased seedset. Coupled with previous studies reporting sex-specific arthropod communities, these results underscore the importance of ecological differences between the sexes in mediating biological responses to climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aaf2588DOI Listing

Publication Analysis

Top Keywords

responses climate
16
climate change
16
sex-specific responses
8
male frequency
8
sex-specific
5
climate
4
change
4
change plants
4
plants alter
4
alter population
4

Similar Publications

Psychological chronic pain treatments have variable efficacy across individual patients, and on average tend to produce modest effects. In order to improve treatment outcomes, the past decade has seen a rapid increase in research focused on determining the mechanisms underlying treatment-related gains. The near exclusive focus of this research has been on uncovering patient-related mediators and moderators.

View Article and Find Full Text PDF

With climate extremes' rising frequency and intensity, robust analytical tools are crucial to predict their impacts on terrestrial ecosystems. Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data complexity can challenge the effectiveness of machine learning models.

View Article and Find Full Text PDF

Fish are ectothermic animals with temperature playing a key role in their health, growth and survival. Greater occurrence of heat waves and temperature extremes, as a result of global climate change, has the potential to impact both wild and farmed populations. Within aquaculture, production is threatened by a multitude of stressors, including adverse temperatures.

View Article and Find Full Text PDF

The synergies of air quality monitoring program: Information disclosure and pollution control.

J Environ Manage

January 2025

Chongqing Environmental Consulting Co., Ltd., CISDI Group Co., Ltd., Chongqing, China. Electronic address:

To deal with the increasingly severe climate crisis and environmental pollution, China launched a nationwide real-time air quality monitoring program in three batches, a milestone moment in its environmental governance history. Using the time-varying difference-in-differences model, this study explores the synergies of this program across 284 cities from 2009 to 2019. The findings are as follows: (1) With environmental information disclosed, the national air quality monitoring program can reduce the outdoor fine particulate matter concentration by an overall effect of 3.

View Article and Find Full Text PDF

Improving the understanding of rainfall-runoff processes: Temporal dynamic of event runoff response in Loess Plateau, China.

J Environ Manage

January 2025

School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China. Electronic address:

Enhancing the understanding of the rainfall-runoff temporal dynamics in semi-arid and semi-humid regions is crucial for flood disaster mitigation. Loess Plateau is a unique environment within semi-arid and semi-humid regions, characterized by its deep loess soil, prevalent short-duration intense rainfall, and changes in underlying surface conditions. In this research, 25 catchments from the Loess Plateau were chosen to examine the temporal variations in event runoff responses across different time scales.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!