Background: Currently, a range of 'off-the-shelf' ankle foot orthoses are used in clinical practice, of various functions and designs. Their use relates to immediate control over mild conditions.

Objectives: To investigate the properties of carbon fibre ankle foot orthoses at different percentage layups and provide a comparison of these through assessment of the (1) elastic properties, (2) deflection about the ankle (including the calculation of stiffness) and (3) failure under compressive forces (dorsiflexion).

Study Design: Experimental, bench test.

Methods: Literature was reviewed to derive a suitable bench test for mechanical testing of ankle foot orthoses. Two universal Instron machines were used to apply the necessary forces. A pilot device was utilised to establish the range of forces appropriate to confirm the setup chosen was effective. Each test was then carried out on nine ankle foot orthoses (3 × 3 different percentage layups).

Results: All nine devices had their elastic properties deduced. Stiffness exhibited greater resistance in tension, with angular deflection being greatest in the 'Lite' set and least in the Rigid. Failure occurred mainly due to fracture, proximally on the strut; however, this was not consistent among the devices.

Conclusion: Results confirmed the properties expected of carbon fibre ankle foot orthoses were consistent. This can now be related to functionality and therefore specific device prescription options. Clinical relevance This article attempts to increase the understanding and develop the area of mechanically testing ankle foot orthoses. This was achieved by comparing carbon fibre at different percentage layups on an identical design and their resultant structural properties. This article outlines a clear and simple setup for obtaining repeatable results.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0309364616652015DOI Listing

Publication Analysis

Top Keywords

ankle foot
28
foot orthoses
24
carbon fibre
16
percentage layups
12
fibre ankle
12
ankle
8
elastic properties
8
testing ankle
8
foot
7
properties
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!