A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Early Activation of Experience-Independent Dendritic Spine Turnover in a Mouse Model of Alzheimer's Disease. | LitMetric

Synaptic loss is critical in Alzheimer's disease (AD), but the dynamics of synapse turnover are poorly defined. We imaged dendritic spines in transgenic APPswe/PSen1∆E9 (APP/PS1) cerebral cortex. Dendritic spine turnover is increased far from plaque in aged APP/PS1 mice, and in young APP/PS1 mice prior to plaque formation. Dysregulation occurs in the presence of soluble Aβ oligomer and requires cellular prion protein (PrPC). APP/PS1 mice lack responsiveness of spine turnover to sensory stimulation. Critically, enhanced spine turnover is coupled with the loss of persistent spines starting early and continuing with age. To evaluate mechanisms of experience-independent supranormal spine turnover, we analyzed the transcriptome of young APP/PS1 mouse brain when turnover is altered but synapse density and memory are normal, and plaque and inflammation are absent. Early PrPC-dependent expression changes occur in synaptic and lipid-metabolizing genes. Thus, pathologic synaptic dysregulation underlying AD begins at a young age prior to Aβ plaque.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059166PMC
http://dx.doi.org/10.1093/cercor/bhw188DOI Listing

Publication Analysis

Top Keywords

spine turnover
20
app/ps1 mice
12
dendritic spine
8
alzheimer's disease
8
young app/ps1
8
turnover
7
spine
5
app/ps1
5
early activation
4
activation experience-independent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!