Adaptive regulation of the brain's antioxidant defences by neurons and astrocytes.

Free Radic Biol Med

School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK. Electronic address:

Published: November 2016

The human brain generally remains structurally and functionally sound for many decades, despite the post-mitotic and non-regenerative nature of neurons. This is testament to the brain's profound capacity for homeostasis: both neurons and glia have in-built mechanisms that enable them to mount adaptive or protective responses to potentially challenging situations, ensuring that cellular viability and functionality is maintained. The high and variable metabolic and mitochondrial activity of neurons places several demands on the brain, including the task of neutralizing the associated reactive oxygen species (ROS) produced, to limit the accumulation of oxidative damage. Astrocytes play a key role in providing antioxidant support to nearby neurons, and redox regulation of the astrocytic Nrf2 pathway represents a powerful homeostatic regulator of the large cohort of Nrf2-regulated antioxidant genes that they express. In contrast, the Nrf2 pathway is weak in neurons, robbing them of this particular homeostatic device. However, many neuronal antioxidant genes are controlled by synaptic activity, enabling activity-dependent increases in ROS production to be offset by enhanced antioxidant capacity of both glutathione and thioredoxin-peroxiredoxin systems. These distinct homeostatic mechanisms in neurons and astrocytes together combine to promote neuronal resistance to oxidative insults. Future investigations into signaling between distinct cell types within the neuro-glial unit are likely to uncover further mechanisms underlying redox homeostasis in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5145800PMC
http://dx.doi.org/10.1016/j.freeradbiomed.2016.06.027DOI Listing

Publication Analysis

Top Keywords

neurons astrocytes
8
nrf2 pathway
8
antioxidant genes
8
neurons
7
antioxidant
5
adaptive regulation
4
regulation brain's
4
brain's antioxidant
4
antioxidant defences
4
defences neurons
4

Similar Publications

Single-Cell Transcriptome Reveals the Heterogeneity of T Cells in Mice with Systemic Lupus Erythematosus and Neuronal Inflammation.

J Inflamm Res

December 2024

Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.

Introduction: Systemic lupus erythematosus is a heterogeneous autoimmune disease. A burst of autoimmune reactions in various systems can lead to severe clinical conditions closely associated with mortality. T cells serve as mediators that drive the occurrence and maintenance of inflammatory processes.

View Article and Find Full Text PDF

The free-living amoeba (NF) causes a rare but lethal parasitic meningoencephalitis (PAM) in humans. Currently, this disease lacks effective treatments and the specific molecular mechanisms that govern NF pathogenesis and host brain response remain unknown. To address some of these issues, we sought to explore naturally existing virulence diversity within environmental NF isolates.

View Article and Find Full Text PDF

Acute astrocytic and neuronal regulation of glutamatergic protein expression following blast.

Neurosci Lett

December 2024

School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; Veterans Affairs Medical Center, Salem, VA, USA. Electronic address:

Regulation of glutamate through glutamate-glutamine cycling is critical for mediating nervous system plasticity. Blast-induced traumatic brain injury (bTBI) has been linked to glutamate-dependent excitotoxicity, which may be potentiating chronic disorders such as post-traumatic epilepsy. The purpose of this study was to measure changes in the expression of astrocytic and neuronal proteins responsible for glutamatergic regulation at 4-, 12-, and 24 h in the cortex and hippocampus following single blast exposure in a rat model for bTBI.

View Article and Find Full Text PDF

Neurovascular unit impairment in iron deficiency anemia.

Neuroscience

December 2024

Departamento de Neurobiología y Neuropatología, IIBCE, MEC, Montevideo, Uruguay. Electronic address:

Iron is one of the crucial elements for CNS development and function and its deficiency (ID) is the most common worldwide nutrient deficit in the world. Iron deficiency anemia (IDA) in pregnant women and infants is a worldwide health problem due to its high prevalence and its irreversible long-lasting effects on brain development. Even with iron supplementation, IDA during pregnancy and/or breastfeeding can result in irreversible cognitive, motor, and behavioral impairments.

View Article and Find Full Text PDF

SUMO2 rescues neuronal and glial cells from the toxicity of P301L Tau mutant.

Front Cell Neurosci

December 2024

Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Introduction: Abnormal intracellular accumulation of Tau aggregates is a hallmark of Alzheimer's disease (AD) and other Tauopathies, such as Frontotemporal dementia (FTD). Tau deposits primarily affect neurons, but evidence indicates that glial cells may also be affected and contribute distinctively to disease progression. Cells can respond to toxic insults by orchestrating global changes in posttranslational modifications of their proteome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!