A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

molSimplify: A toolkit for automating discovery in inorganic chemistry. | LitMetric

molSimplify: A toolkit for automating discovery in inorganic chemistry.

J Comput Chem

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139.

Published: August 2016

We present an automated, open source toolkit for the first-principles screening and discovery of new inorganic molecules and intermolecular complexes. Challenges remain in the automatic generation of candidate inorganic molecule structures due to the high variability in coordination and bonding, which we overcome through a divide-and-conquer tactic that flexibly combines force-field preoptimization of organic fragments with alignment to first-principles-trained metal-ligand distances. Exploration of chemical space is enabled through random generation of ligands and intermolecular complexes from large chemical databases. We validate the generated structures with the root mean squared (RMS) gradients evaluated from density functional theory (DFT), which are around 0.02 Ha/au across a large 150 molecule test set. Comparison of molSimplify results to full optimization with the universal force field reveals that RMS DFT gradients are improved by 40%. Seamless generation of input files, preparation and execution of electronic structure calculations, and post-processing for each generated structure aids interpretation of underlying chemical and energetic trends. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.24437DOI Listing

Publication Analysis

Top Keywords

discovery inorganic
8
intermolecular complexes
8
molsimplify toolkit
4
toolkit automating
4
automating discovery
4
inorganic chemistry
4
chemistry automated
4
automated open
4
open source
4
source toolkit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!