Cerebrovascular aging has a high relationship with stroke and neurodegenerative disease. In the present study, we evaluated the influence of fibroblast growth factor 21 (FGF21) on angiotensin (Ang II)-mediated cerebrovascular aging in human brain vascular smooth muscle cells (hBVSMCs). Ang II induced remarkable aging-phenotypes in hBVSMCs, including enhanced SA-β-gal staining and NBS1 protein expression. First, we used immunoblotting assay to confirm protein expression of FGF21 receptor (FGFR1) and the co-receptor β-Klotho in cultured hBVSMCs. Second, we found that FGF21 treatment partly prevented the aging-related changes induced by Ang II. FGF21 inhibited Ang II-enhanced ROS production/superoxide anion levels, rescued the Ang II-reduced Complex IV and citrate synthase activities, and suppressed the Ang II-induced meprin protein expression. Third, we showed that FGF21 not only inhibited the Ang II-induced p53 activation, but also blocked the action of Ang II on Siah-1-TRF signaling pathway which is upstream factors for p53 activation. At last, either chemical inhibition of AMPK signaling pathway by a specific antagonist Compound C or knockdown of AMPKα1/2 isoform using siRNA, successfully abolished the anti-aging action of FGF21 in hBVSMCs. These results indicate that FGF21 protects against Ang II-induced cerebrovascular aging via improving mitochondrial biogenesis and inhibiting p53 activation in an AMPK-dependent manner, and highlight the therapeutic value of FGF21 in cerebrovascular aging-related diseases such as stroke and neurodegenerative disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2016.06.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!