Owing to the straightforward synthesis, good biological compatibility, and ease of surface functionalization, gold nanoparticles (AuNPs) have shown great potential in various biomedical applications, including diagnostic imaging, photothermal therapy (PTT), and drug delivery. Physicochemical properties (e.g. shape, size and surface chemistry) may potentially affect the interaction of AuNPs with biological systems, thus ultimately influencing their cell uptake, pharmacokinetics, biodistribution, drug delivery efficiency, and biological effects. This review focuses on recent advances in understanding the relation between physicochemical characteristics of AuNPs and their navigation through different biological processes, including biodistribution, penetration of biological barriers (e.g. blood-brain barrier), clearance, and metabolism. Furthermore, the in vitro and in vivo toxicological effects of AuNPs and their possible mechanisms were discussed. A thorough understanding of these influencing factors will be crucial for the rational design, customized functionalization, and clinical translation of AuNPs in drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1389200217666160629114941 | DOI Listing |
J Am Coll Cardiol
December 2024
Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA; Adult and Child Center for Outcomes Research and Delivery Science, University of Colorado School of Medicine, Aurora, Colorado, USA.
As expensive therapeutics rise to the fore of heart failure management, out-of-pocket (OOP) medication costs have become increasingly relevant to patient care. Prescription medication costs influence medical decision-making and affect adherence. Yet, individualized cost estimates are seldom available during clinical encounters when prescription decisions are made.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary.
The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
This study evaluates the efficacy of twin screw melt granulation (TSMG), and hot-melt extrusion (HME) techniques in enhancing the solubility and dissolution of simvastatin (SIM), a poorly water-soluble drug with low bioavailability. Additionally, the study explores the impact of binary polymer blends on the drug's miscibility, solubility, and in vitro release profile. SIM was processed with various polymeric combinations at a 30% / drug load, and a 1:1 ratio of binary polymer blends, including Soluplus (SOP), Kollidon K12 (K12), Kollidon VA64 (KVA), and Kollicoat IR (KIR).
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmacy, Xuzhou Hospital of Traditional Chinese Medicine, Xuzhou 221003, China.
To design a multifunctional nanozyme hydrogel with antibacterial, photo-responsive nitric oxide-releasing, and antioxidative properties for promoting the healing of infected wounds. We first developed ultra-small silver nanoparticles (NPs)-decorated sodium nitroprusside-doped Prussian blue (SNPB) NPs, referred to as SNPB@Ag NPs, which served as a multifunctional nanozyme. Subsequently, this nanozyme, together with geniposide (GE), was incorporated into a thermo-sensitive hydrogel, formulated from Poloxamer 407 and carboxymethyl chitosan, creating a novel antibacterial wound dressing designated as GE/SNPB@Ag hydrogel.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
Background/objectives: In this study, HECP2k polymer, polyethylenimine2k (PEI2k)-modified hydroxyethyl cellulose (HEC) was utilized to form the nanocomplexes with receptor activator of nuclear factor k-B (RANK) siRNA and zoledronate (Zol) for osteoclast inhibition. HECP2k/(RANK siRNA + Zol) nanocomplexes prepared by simple mixing were anticipated to overcome the low transfection efficiency of siRNA and the low bioavailability of Zol.
Methods: The characterization of both HECP2k/(pDNA + Zol) nanocomplexes and HECP2k/(RANK siRNA + Zol) nanocomplexes was performed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!