First conceptualized from breath-hold diving mammals, later recognized as the ultimate cell autonomous survival strategy in anoxia-tolerant vertebrates and burrowing or hibernating rodents, hypometabolism is typically recruited by resilient organisms to withstand and recover from otherwise life-threatening hazards. Through the coordinated down-regulation of biosynthetic, proliferative and electrogenic expenditures at times when little ATP can be generated, a metabolism turned 'down to the pilot light' allows the re-balancing of energy demand with supply at a greatly suppressed level in response to noxious exogenous stimuli or seasonal endogenous cues. A unifying hallmark of stress-tolerant organisms, the adaptation effectively prevents lethal depletion of ATP, thus delineating a marked contrast with susceptible species. Along with disengaged macromolecular syntheses, attenuated transmembrane ion shuttling and PO -conforming respiration rates, the metabolic slowdown in tolerant species usually culminates in a non-cycling, quiescent phenotype. However, such a reprogramming also occurs in leading human pathophysiologies. Ranging from microbial infections through ischaemia-driven infarcts to solid malignancies, cells involved in these disorders may again invoke hypometabolism to endure conditions non-permissive for growth. At the same time, their reduced activities underlie the frequent development of a general resistance to therapeutic interventions. On the other hand, a controlled induction of hypometabolic and/or hypothermic states by pharmacological means has recently stimulated intense research aimed at improved organ preservation and patient survival in situations requiring acutely administered critical care. The current review article therefore presents an up-to-date survey of concepts and applications of a coordinated and reversibly down-regulated metabolic rate as the ultimate defence in stress responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/apha.12747 | DOI Listing |
Sci Total Environ
January 2025
Microbiology of Agroforestry Ecosystems, Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain. Electronic address:
Pinus pinaster Aiton (maritime pine) stands are suffering a generalized deterioration due to different decline episodes throughout all its distribution area. It is well known that external disturbances can alter the plant associated microbiota and metabolome, which ultimately can entail the disruption of the normal growth of the hosts. Notwithstanding, very little is known about the shifts in the microbiota and the metabolome in pine trees affected by decline.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.
The striped stem borer (Chilo suppressalis, SSB) is a highly destructive insect pest in rice (Oryza sativa). SSB oral secretions (OSs) can induce plant defense responses in rice. However, the specific effectors in SSB OSs that mediate these interactions with rice remain poorly understood.
View Article and Find Full Text PDFDev Comp Immunol
January 2025
State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Medical Research Institute, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing, 401329, China. Electronic address:
Non-coding RNAs (ncRNAs) are composed of nucleotides that do not encode proteins but instead serve as guides. It interacts with amino acids at precise genomic sites, influencing chromatin structure and gene expression. These ncRNAs contribute to numerous inter-species dynamics, including those within the vector-host-pathogen triad.
View Article and Find Full Text PDFJ Tradit Complement Med
January 2025
National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei City, 112026, Taiwan.
Amidst growing concerns over COVID-19 aftereffects like fatigue and cognitive issues, NRICM101, a traditional Chinese medicine, has shown promise. Used by over 2 million people globally, it notably reduces hospitalizations and intubations in COVID-19 patients. To explore whether NRICM101 could combat COVID-19 brain fog, we tested NRICM101 on hACE2 transgenic mice administered the S1 protein of SARS-CoV-2, aiming to mitigate S1-induced cognitive issues by measuring animal behaviors, immunohistochemistry (IHC) staining, and next-generation sequencing (NGS) analysis.
View Article and Find Full Text PDFCureus
December 2024
Pediatric Neurology, Bahrain Defence Force Hospital, Riffa, BHR.
Super-refractory status epilepticus (SRSE) is defined as status epilepticus that persists or recurs after treatment with anesthetic agents for more than 24 hours, including cases with recurrent seizures on reduction or withdrawal of anesthetic drugs. Super-refractory status epilepticus presents a significant challenge for neurologists, particularly when standard treatments fail to achieve seizure control. Lacosamide, which has a unique mechanism involving modulating voltage-gated sodium channels by enhancing their slow inactivation, has emerged as a potential option for managing SRSE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!