Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mitochondrial dynamics during nutrient starvation of cancer cells likely exert profound effects on their capability for metastatic progression. Here, we report that KAP1 (TRIM28), a transcriptional coadaptor protein implicated in metastatic progression in breast cancer, is a pivotal regulator of mitochondrial fusion in glucose-starved cancer cells. Diverse metabolic stresses induced Ser473 phosphorylation of KAP1 (pS473-KAP1) in a ROS- and p38-dependent manner. Results from live-cell imaging and molecular studies revealed that during the first 6 to 8 hours of glucose starvation, mitochondria initially underwent extensive fusion, but then subsequently fragmented in a pS473-KAP1-dependent manner. Mechanistic investigations using phosphorylation-defective mutants revealed that KAP1 Ser473 phosphorylation limited mitochondrial hyperfusion in glucose-starved breast cancer cells, as driven by downregulation of the mitofusin protein MFN2, leading to reduced oxidative phosphorylation and ROS production. In clinical specimens of breast cancer, reduced expression of MFN2 corresponded to poor prognosis in patients. In a mouse xenograft model of human breast cancer, there was an association in the core region of tumors between MFN2 downregulation and the presence of highly fragmented mitochondria. Collectively, our results suggest that KAP1 Ser473 phosphorylation acts through MFN2 reduction to restrict mitochondrial hyperfusion, thereby contributing to cancer cell survival under conditions of sustained metabolic stress. Cancer Res; 76(17); 5006-18. ©2016 AACR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5316485 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-15-2921 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!