The steady-state assumption in oscillating and growing systems.

J Theor Biol

Centrum Wiskunde & Informatica, Science Park 123, 1098 XG Amsterdam, Netherlands. Electronic address:

Published: October 2016

The steady-state assumption, which states that the production and consumption of metabolites inside the cell are balanced, is one of the key aspects that makes an efficient analysis of genome-scale metabolic networks possible. It can be motivated from two different perspectives. In the time-scales perspective, we use the fact that metabolism is much faster than other cellular processes such as gene expression. Hence, the steady-state assumption is derived as a quasi-steady-state approximation of the metabolism that adapts to the changing cellular conditions. In this article we focus on the second perspective, stating that on the long run no metabolite can accumulate or deplete. In contrast to the first perspective it is not immediately clear how this perspective can be captured mathematically and what assumptions are required to obtain the steady-state condition. By presenting a mathematical framework based on the second perspective we demonstrate that the assumption of steady-state also applies to oscillating and growing systems without requiring quasi-steady-state at any time point. However, we also show that the average concentrations may not be compatible with the average fluxes. In summary, we establish a mathematical foundation for the steady-state assumption for long time periods that justifies its successful use in many applications. Furthermore, this mathematical foundation also pinpoints unintuitive effects in the integration of metabolite concentrations using nonlinear constraints into steady-state models for long time periods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2016.06.031DOI Listing

Publication Analysis

Top Keywords

steady-state assumption
16
oscillating growing
8
growing systems
8
second perspective
8
mathematical foundation
8
long time
8
time periods
8
steady-state
7
perspective
5
assumption oscillating
4

Similar Publications

Radionuclide sorption dynamics in the Rhone River: Experimental and modelling approach.

J Environ Radioact

January 2025

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/STAAR/LRTA, PSE-ENV/SPDR/LT2S, Saint-Paul-lez-Durance, F-13115, France. Electronic address:

The transfer of radionuclides discharged into rivers by nuclear facilities are conditioned by their solid/liquid fractionation, commonly represented by an equilibrium approach using the distribution coefficient K. This coefficient, largely used in modeling, assumes an instantaneous and completely reversible reaction. However, such assumptions are rarely verified.

View Article and Find Full Text PDF

A generalized maximum correntropy based constraint adaptive filtering: Constraint-forcing and performance analyses.

ISA Trans

December 2024

School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China. Electronic address:

The quadratic cost functions, exemplified by mean-square-error, often exhibit limited robustness and flexibility when confronted with impulsive noise contamination. In contrast, the generalized maximum correntropy (GMC) criterion, serving as a robust nonlinear similarity measure, offers superior performance in such scenarios. In this paper, we develop a recursive constrained adaptive filtering algorithm named recursive generalized maximum correntropy with a forgetting factor (FF-RCGMC).

View Article and Find Full Text PDF

Hyperballistic transport in dense systems of charged particles under ac electric fields.

Phys Rev E

November 2024

Department of Physics "A. Pontremoli, " University of Milan, via Celoria 16, 20133 Milan, Italy.

The Langevin equation is ubiquitously employed to numerically simulate plasmas, colloids, and electrolytes. However, the usual assumption of white noise becomes untenable when the system is subject to an external ac electric field. This is because the charged particles in the system, which provide the thermal bath for the particle transport, become themselves responsive to the ac field and the thermal noise is field dependent and non-Markovian.

View Article and Find Full Text PDF

Enhancers are discrete DNA elements that regulate the expression of eukaryotic genes. They are important not only for their regulatory function, but also as loci that are frequently associated with disease traits. Despite their significance, our conceptual understanding of how enhancers work remains limited.

View Article and Find Full Text PDF

The SLC (solute carrier) superfamily mediates the passive transport of small molecules across apical and basolateral cell membranes in nearly all tissues. In this paper, we employ bond-graph approaches to develop models of SLC transporters that conserve mass, charge, and energy, respectively, and can be parameterized for a specific cell and tissue type for which the experimental kinetic data are available. We show how analytic expressions that preserve thermodynamic consistency can be derived for a representative four- or six-state model, given reasonable assumptions associated with steady-state flux conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!