We investigated the function of 1,4-benzoquinone reductase (BQR)- and homogentisate 1,2-dioxygenase (HGD)-like genes in wood degradation by Phanerochaete sordida YK-624, which exhibits high ligninolytic activity and selectivity. We determined homologous expression in the genomic and cDNA sequences of BQR- and HGD-like genes in P. sordida YK-624 (PsBQR and PsHGD). Both genes shared high homology (≥90 % amino acid sequence similarity) with the corresponding genes in Phanerochaete chrysosporium. These genes were co-transformed with a reporter gene into an uracil auxotrophic mutant of P. sordida YK-624. The PsBQR and PsHGD co-transformants exhibited lower holocellulolytic activity and higher ligninolytic selectivity than the control transformants. In liquid culture with vanillin, both co-transformants significantly accelerated vanillin degradation. Thus, we suggest that the rapid metabolism of low-molecular weight lignin fragments, due to the homologous expression of BQR- and HGD-like genes, affects quinone redox cycling to produce hydroxyl radicals, thereby decreasing holocellulose degradation and increasing ligninolytic selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-016-1089-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!