Kinetic curves and isotherms were investigated to study the sorption mechanism of phosphorus onto the sediments of Sanggou Bay, together with the surface charge properties of sediments and the forms of phosphorus studied. The results showed that the sorption including a fast process and a slow one, and could be described by a two-compartment first order equation. The thermodynamic isotherms were well fitted with a modified Langmuir equation. The maximum adsorption capacity was larger in summer than in spring, and the smaller particle size was favorable to the sorption. The maximum adsorption capacities (Qm) were 0.0471-0.1230 mg x g(-1), and the zero equilibrium phosphorus concentration (EPC0) of the sediments ranged from 0.0596 mg x L(-1) to 0.1927 mg x L(-1), which indicated that the sediments from Sanggou Bay were sources of phosphorus. Inorganic phosphorus (IP) was the main form of total phosphorus (TP). The contents of exchangeable or loosely absorbed P and Fe-bound P increased significantly in the samples after sorption. The sorption process involved physical sorption and chemical sorption, with the former being the predominant.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sediments sanggou
12
sorption
8
sanggou bay
8
maximum adsorption
8
phosphorus
7
sediments
5
[surface property
4
property sorption
4
sorption characteristics
4
characteristics phosphorus
4

Similar Publications

Biogenic silica in sediment core indicates the historical development of off-bottom oyster farming.

Sci Total Environ

October 2024

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China. Electronic address:

Sediment cores are commonly used for reconstructing historical events by determining the biogenic elements in sediment vertical profiles. The vertical flux of biogenic silica (BSi) can be enhanced by bivalve mollusks through biodeposition and can be subsequently recorded in the sediment core. However, whether BSi in sediment core can indicate the interactions between aquaculture farms and the ecosystem is unclear.

View Article and Find Full Text PDF

Seasonal field surveys (April 2018 to February 2019) were conducted in a subterranean estuary (STE) seepage face in Sanggou Bay (China) aiming to explore the transport and reactivity of phosphorus (P) and biogeochemical linkages with the cycling of nitrogen (N) prior to discharge. Porewater dissolved inorganic phosphorus (DIP) and dissolved organic phosphorus (DOP) together with different fractions of sedimentary P were analyzed in the upper, middle and lower intertidal covering the top 20 cm of sediment (1-4 cm, 5-8 cm, 9-12 cm, 13-16 cm and 17-20 cm depth). The accumulation of sedimentary organic P stimulated the growth of phosphate-solubilizing microorganisms and led to porewater DOP enrichment during spring.

View Article and Find Full Text PDF

Influence of the intensive mariculture on coastal sedimentary organic matter: Insight from size-fractionated particles.

Mar Environ Res

March 2024

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China.

A portion of carbon produced from shellfish and kelp cultivation is buried in sedimentary environment, and mariculture carbon sequestration potential is an important part of marine carbon sink and has attracted worldwide attention. Total organic carbon (TOC), total nitrogen (TN) and their stable isotopes (δC and δN), as well as the mass distribution of these size-fractionated particles were determined in order to study the distribution and sources of TOC in Sanggou Bay. Results showed that sediment organic matter has complex sources from kelp (30.

View Article and Find Full Text PDF

Distribution and pollution assessment of heavy metals in surface sediments along the Weihai coast, China.

Mar Pollut Bull

May 2023

Yantai Coastal Zones Geological Survey, China Geological Survey, Yantai 264000, PR China.

In this study, 78 surface sediment samples were collected from the Weihai coastal area and analyzed for heavy metals. Their concentrations and pollution status were evaluated. The distribution of heavy metals was mainly dominated by sediment grain size, and the sediments in the Weihai, Sanggou, and Rushan Bays, which have finer grain sizes, had higher concentrations.

View Article and Find Full Text PDF

A novel framework-based meta-analysis for in-depth characterization of microplastic pollution and associated ecological risks in Chinese Bays.

J Hazard Mater

February 2023

College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China. Electronic address:

Among aquatic ecosystems, bays are ubiquitously contaminated with microplastics (MPs, size <5 mm), but a comprehensive understanding of their pollution characterization in Chinese Bays is largely elusive. The current study aims to systematically highlight factors intricating MP contamination as well as their geographic distribution, interactions, risk evaluation, and abundance prediction in bays. MPs' abundance was varied in different bays, at concentrations ranging between 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!