Mitochondrial Sirtuin 3 and Renal Diseases.

Nephron

IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Anna Maria Astori Centre, Kilometro Rosso Science and Technology Park, Bergamo, Italy.

Published: March 2017

Mitochondria are dynamic organelles whose functions are tightly regulated at multiple levels to maintain proper cellular homeostasis. Mitochondrial Sirtuin 3 (SIRT3), which belongs to an evolutionary conserved family of NAD+-dependent deacetylases, is a key regulator of the mitochondrial respiratory chain, ATP production, and fatty acid β-oxidation, and it exerts an antioxidant activity. Changes in SIRT3 expression are critical in the pathophysiology of several diseases, such as metabolic syndrome, diabetes, cancer, and aging. In experimental acute kidney injury (AKI), impairment of renal function and development of tubular injury are associated with SIRT3 reduction and mitochondrial dysfunction in proximal tubuli. SIRT3-deficient mice are more susceptible to AKI and die. Pharmacological manipulations able to increase SIRT3 preserve mitochondrial integrity, markedly limit renal injury, and accelerate functional recovery. This review highlights all the selective rescue mechanisms that point to the key role of SIRT3 as a new therapeutic target for curing renal diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000444370DOI Listing

Publication Analysis

Top Keywords

mitochondrial sirtuin
8
renal diseases
8
mitochondrial
5
sirt3
5
renal
4
sirtuin renal
4
diseases mitochondria
4
mitochondria dynamic
4
dynamic organelles
4
organelles functions
4

Similar Publications

Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke, and the neuroprotective effects of nimodipine following SAH have been well-documented. Sirtuin 3 (SIRT3), a mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, plays a significant role in mitigating oxidative stress in various neurodegenerative conditions. However, the role of SIRT3 in the neuroprotective mechanisms of nimodipine after SAH remains unclear.

View Article and Find Full Text PDF

MnSOD non-acetylation mimic knock-in mice exhibit dilated cardiomyopathy.

Free Radic Biol Med

January 2025

Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA. Electronic address:

Manganese superoxide dismutase (MnSOD/SOD2) is an essential mitochondrial enzyme that detoxifies superoxide radicals generated during oxidative respiration. MnSOD/SOD2 lysine 68 acetylation (K68-Ac) is an important post-translational modification (PTM) that regulates enzymatic activity, responding to nutrient status or oxidative stress, and elevated levels have been associated with human illness. To determine the in vivo role of MnSOD-K68 in the heart, we used a whole-body non-acetylation mimic mutant (MnSOD) knock-in mouse.

View Article and Find Full Text PDF

Calycosin‑7‑O‑β‑D‑glucoside downregulates mitophagy by mitigating mitochondrial fission to protect HT22 cells from oxygen‑glucose deprivation/reperfusion‑induced injury.

Mol Med Rep

March 2025

Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‑Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China.

Calycosin‑7‑O‑β‑D‑glucoside (CG), a major active ingredient of Astragali Radix, exerts neuroprotective effects against cerebral ischemia; however, whether the effects of CG are associated with mitochondrial protection remains unclear. The present study explored the role of CG in improving mitochondrial function in a HT22 cell model of oxygen‑glucose deprivation/reperfusion (OGD/R). The Cell Counting Kit‑8 assay, flow cytometry, immunofluorescence and western blotting were performed to investigate the effects of CG on mitochondrial function.

View Article and Find Full Text PDF

Stroke is the leading cause of death and disability worldwide, with ischemic stroke accounting for the majority of these. HBA is the active ingredient in and has potential therapeutic effects on central nervous system diseases. In this study, the cell model of cerebral ischemia was replicated by the culture method of oxygen-glucose deprivation/reoxygenation, and the rat model of vascular dementia was established by the two-vessel occlusion method.

View Article and Find Full Text PDF

A diabetic heart is characterized by fibrosis, autophagy, oxidative stress, and altered mitochondrial functions. For this review, three databases (PubMed, EMBASE, and Web of Science) were searched for articles written in English from September 2023 to April 2024. Studies that used exercise training for at least 3 weeks and which reported positive, negative, or no effects were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!