MicroRNAs (miRNAs) are a set of small single-stranded noncoding RNAs with diverse biological functions. As a prototypical hypoxamir, human microRNA-210 (hsa-miR-210) is one of the most widely studied miRNAs thus far. In addition to its involvement in sophisticated regulation of numerous biological processes, miR-210 has also been shown to be associated with the development of different human diseases including various types of cancers, cardiovascular and cerebrovascular diseases, and immunological diseases. Given its multi-faceted functions, miR-210 may serve as a novel and promising theranostic target for prevention and treatment of diseases. Areas covered: This review aims to provide a comprehensive overview of miR-210, the regulation of its expression, biological functions and molecular mechanisms, with particular emphasis on its diagnostic and therapeutic potential. Expert opinion: Although the exact roles of miR-210 in various diseases have not been fully clarified, targeting miR-210 may be a promising therapeutic strategy. Further investigations are also needed to facilitate therapeutic-clinical applications of miR-210 in human diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14728222.2016.1206890 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Advanced Materials Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.
View Article and Find Full Text PDFBrain
January 2025
Translational Neuroimaging Laboratory, Montreal Neurological Institute, H3A 2B4, Montreal, Canada.
Plasma phosphorylated tau biomarkers open unprecedented opportunities for identifying carriers of Alzheimer's disease pathophysiology in early disease stages using minimally invasive techniques. Plasma p-tau biomarkers are believed to reflect tau phosphorylation and secretion. However, it remains unclear to what extent the magnitude of plasma p-tau abnormalities reflects neuronal network disturbance in the form of cognitive impairment.
View Article and Find Full Text PDFNeurology
February 2025
School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
Background And Objectives: Lipid metabolism in older adults is affected by various factors including biological aging, functional decline, reduced physiologic reserve, and nutrient intake. The dysregulation of lipid metabolism could adversely affect brain health. This study investigated the association between year-to-year intraindividual lipid variability and subsequent risk of cognitive decline and dementia in community-dwelling older adults.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
March 2025
Servei de Neurologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
Background And Objectives: Invasive procedures may delay the diagnostic process in multiple sclerosis (MS). We investigated the added value of serum neurofilament light chain (sNfL), glial fibrillary acidic protein (sGFAP), chitinase-3-like 1 (sCHI3L1), and the immune responses to the Epstein-Barr virus-encoded nuclear antigen 1 to current MS diagnostic criteria.
Methods: In this multicentric study, we selected patients from 2 prospective cohorts presenting a clinically isolated syndrome (CIS).
Annu Rev Chem Biomol Eng
January 2025
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden; email:
Organic mixed ionic-electronic conductors (OMIECs) could revolutionize bioelectronics by enabling seamless integration with biological systems. This review explores their role in neural biomimicry and biointerfacing, with a focus on how backbone design, sidechain optimization, and antiambipolarity impact performance. Recent advances highlight OMIECs' biocompatibility and mechanical compliance, making them ideal for bioelectronic applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!