Dealing with the water molecule on the surface of LiNi0.6Co0.2Mn0.2O2 (NCM) cathode and hydrogen fluoride in the electrolyte is one of the most difficult challenges in Li-ion battery research. In this paper, the surface polymerization of tetraethyl orthosilicate (TEOS) on NCM to generate ethoxy-functional polysiloxane (EPS) wrapped NCM (E-NCM) cathode under mild conditions and without any additions is utilized to solve this intractable problem. The differential scanning calorimetry, transmission electron microscopy, and X-ray photoelectron spectroscopy results show that the formed amorphous coating can provide a protective shell to improve the NCM thermal stability, suppress the thickening of the solid electrolyte interphase (SEI) layer, and scavenge HF in the electrolyte. The E-NCM composite with 2 mol % EPS delivers a high discharge capacity retention of 84.9% after 100 cycles at a 1 C discharge rate in the 2.8-4.3 V potential range at 55 °C. Moreover, electrochemical impedance spectroscopy measurements reveal that the EPS coating could alleviate the impedance rise during cycling especially at an elevated temperature. Therefore, the fabricated E-NCM cathode with long-term cycling and thermal stability is a promising candidate for use in a high-energy Li-ion battery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b04644 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!