Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Studies on genetic diversity and recombination in bacterial pathogens are providing a better understanding of the mechanisms shaping bacterial diversity, which can affect disease control. Xanthomonas campestris pv. vitians, causal agent of bacterial leaf spot of lettuce, is a threat to the worldwide lettuce industry. We examined the genetic variation within a sample of 83 strains from California, Florida, and Ohio using multilocus sequence typing of six housekeeping genes, totaling 2.7 kb. Additionally, polymorphism in two virulence-related genes, hrpB2 and a putative glycosyl hydrolase, were examined. Based on housekeeping genes, we found three genetic groups of strains that were all able to induce the disease. These included strains collected from weeds and irrigation water that had haplotypes identical to strains from diseased lettuce. High linkage disequilibrium across the sequenced loci indicates that the pathogen is predominantly clonal but recombination has contributed to the observed sequence variation. Although there was significant genetic variation in X. campestris pv. vitians within and among sampled states, identical haplotypes were observed across all three states. This finding suggests that seedborne inoculum may contribute to the diversity of X. campestris pv. vitians in the United States. Knowledge of the genetic structure of the pathogen may be used for developing resistant lettuce varieties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-11-15-0302-R | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!