An undulator-based vacuum ultraviolet (VUV) beamline (BL03U), intended for combustion chemistry studies, has been constructed at the National Synchrotron Radiation Laboratory (NSRL) in Hefei, China. The beamline is connected to the newly upgraded Hefei Light Source (HLS II), and could deliver photons in the 5-21 eV range, with a photon flux of 10(13) photons s(-1) at 10 eV when the beam current is 300 mA. The monochromator of the beamline is equipped with two gratings (200 lines mm(-1) and 400 lines mm(-1)) and its resolving power is 3900 at 7.3 eV for the 200 lines mm(-1) grating and 4200 at 14.6 eV for the 400 lines mm(-1) grating. The beamline serves three endstations which are designed for respective studies of premixed flame, fuel pyrolysis in flow reactor, and oxidation in jet-stirred reactor. Each endstation contains a reactor chamber, an ionization chamber where the molecular beam intersects with the VUV light, and a home-made reflectron time-of-flight mass spectrometer. The performance of the beamline and endstations with some preliminary results is presented here. The ability to detect reactive intermediates (e.g. H, O, OH and hydroperoxides) is advantageous in combustion chemistry research.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S1600577516005816DOI Listing

Publication Analysis

Top Keywords

vacuum ultraviolet
8
combustion chemistry
8
200 lines mm-1
8
400 lines mm-1
8
mm-1 grating
8
beamline
5
ultraviolet beamline/endstations
4
beamline/endstations at nsrl
4
at nsrl dedicated
4
dedicated combustion
4

Similar Publications

Elucidating the formation mechanism of polycyclic aromatic hydrocarbons (PAHs) is crucial to understand processes in the contexts of combustion, environmental science, astrochemistry, and nanomaterials synthesis. An excited electronic-state pathway has been proposed to account for the formation of 14π aromatic anthracene in the benzyl (b-CH) self-reaction. Here, to improve our understanding of anthracene formation, we investigate CH bimolecular reactions in a tubular SiC microreactor through an isomer-resolved method that combines in situ synchrotron-radiation VUV photoionization mass spectrometry and ex-situ gas chromatography-mass spectrometry.

View Article and Find Full Text PDF

Advances in nanomaterials for radiation protection in the aerospace industry: a systematic review.

Nanotechnology

December 2024

CCTS/DFQM, UFSCar - Campus Sorocaba, Rod. João Leme dos Santos km 110 - SP-264 Bairro do Itinga - Sorocaba CEP 18052-780, Sorocaba, 18052-780, BRAZIL.

Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO).

View Article and Find Full Text PDF

We present a comprehensive overview of the commissioning process and initial results of a synchrotron beamline dedicated to atomic, molecular, and optical sciences at the BL-5 undulator port of the Indus-2 synchrotron facility, Raja Ramanna Center for Advanced Technology, Indore, India. The beamline delivers a photon flux of ∼1012 photons/s with high resolving power (∼10 000) over an energy range of 6-800 eV, making it suitable for high-resolution spectroscopy in atomic, molecular, and optical science. The energy tunability from vacuum ultraviolet to soft x-ray (6-800 eV) is achieved through a varied line spacing plane grating monochromator with four gratings: very low energy (VLEG), low energy (LEG), medium energy (MEG), and high energy (HEG).

View Article and Find Full Text PDF

Balance of Unimolecular and Bimolecular Pathways Control the Temperature-Dependent Kinetics of Ozonolysis in Aerosols.

J Phys Chem A

December 2024

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

To better understand the key kinetic mechanisms controlling heterogeneous oxidation in organic aerosols, submicron particles composed of an alkene and a saturated carboxylic acid are exposed to ozone in a variable-temperature flow tube reactor. Effective uptake coefficients (γ) are obtained from the multiphase reaction kinetics, which are quantified by Vacuum Ultraviolet Photoionization Aerosol Mass Spectrometry. For aerosols composed of only of alkenes, γ doubles (from 6 × 10 to 1.

View Article and Find Full Text PDF

VUV photochemistry of cyclopropenone (c-CHO): formation rate and abundance ratios of propynal (HCCCHO) and propadienone (CHCCO).

Phys Chem Chem Phys

December 2024

Sorbonne Université, CNRS, De la Molécule aux Nano-Objets: Réactivité, Interactions, Spectroscopies, MONARIS, Paris, 75005, France.

The distribution of isomeric species in the interstellar medium cannot be directly related to their relative energetic stabilities but more to their mechanisms of formation and evolution. The abundances of the three isomers of CHO, cyclopropenone, propynal and propadienone, are an example among many other interstellar species wherein kinetic effects control their presence in astrophysical regions. To date, only propynal and cyclopropenone, the two less stable isomers of propadienone, have been detected in the interstellar medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!