Separation of germ cells from somatic cells is a widespread feature of animal sexual reproduction, with a core set of germ cell factors conserved among diverse animals. It is not known what controls their conserved gonad-specific expression. Core components of epigenetic machinery are ancient, but its role in conserved tissue expression regulation remains unexplored. We found that promoters of the reproductive genes BOULE and DAZL exhibit differential DNA methylation, consistent with their gonad-specific expression in humans and mice. Low or little promoter methylation from the testicular tissue is attributed to spermatogenic cells of various stages in the testis. Such differential DNA methylation is present in the orthologous promoters not only of other mammalian species, but also of chickens and fish, supporting a highly conserved epigenetic mechanism. Furthermore, hypermethylation of DAZL and BOULE promoters in human sperm is associated with human infertility. Our data strongly suggest that epigenetic regulation may underlie conserved germ-cell-specific expression, and such a mechanism may play an important role in human fertility.-Zhang, C., Xue, P., Gao, L., Chen, X., Lin, K., Yang, X., Dai, Y., Xu, E. Y. Highly conserved epigenetic regulation of BOULE and DAZL is associated with human fertility.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201500167RDOI Listing

Publication Analysis

Top Keywords

highly conserved
12
conserved epigenetic
12
epigenetic regulation
12
boule dazl
12
associated human
12
regulation boule
8
dazl associated
8
human fertility
8
gonad-specific expression
8
differential dna
8

Similar Publications

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

SAA3 deficiency exacerbates intestinal fibrosis in DSS-induced IBD mouse model.

Cell Death Discov

January 2025

Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.

Intestinal fibrosis, as a late-stage complication of inflammatory bowel disease (IBD), leads to bowel obstruction and requires surgical intervention, significantly lowering the quality of life of affected patients. SAA3, a highly conserved member of the serum amyloid A (SAA) apolipoprotein family in mice, is synthesized primarily as an acute phase reactant in response to infection, inflammation and trauma. An increasing number of evidence suggests that SAA3 exerts a vital role in the fibrotic process, even though the underlying mechanisms are not yet fully comprehended.

View Article and Find Full Text PDF

Regulation of gene expression helps determine various phenotypes in most cellular life forms. It is orchestrated at different levels and at the point of transcription initiation by transcription factors (TFs). TFs bind to DNA through domains that are evolutionarily related, by shared membership of the same superfamilies (TF-SFs), to those found in other nucleic acid binding and protein-binding functions (nTFs for non-TFs).

View Article and Find Full Text PDF

Seagrasses represent a significant class of marine foundation species, yet the distribution of seagrasses in the Yellow Sea and Bohai Sea remains uncertain, thereby impeding the efficacy of conservation and restoration practices. In this study, the spatial and temporal distribution pattern of seagrasses was simulated by the MaxEnt model based on the construction of marine environment and human activity datasets. The main controlling factors affecting seagrass potential distribution were analyzed, and the response of seagrass distribution to global change was clarified.

View Article and Find Full Text PDF

Six novel phages belonging to the family were isolated using as a host. Phages MuffinTheCat, Badulia, DesireeRose, Bee17, SCoupsA, and LuzDeMundo were purified from environmental samples by students participating in the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program at Alliance University, New York. The phages have linear dsDNA genomes 15,438-15,636 bp with 112-120 bp inverted terminal repeats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!