Background and Aims Regulation of water channel aquaporins (AQPs) provides another mechanism by which abscisic acid (ABA) may influence water flow through plants. To the best of our knowledge, no studies have addressed the changes in ABA levels, the abundance of AQPs and root cell hydraulic conductivity (LpCell) in the same tissues. Thus, we followed the mechanisms by which ABA affects root hydraulics in an ABA-deficient barley mutant Az34 and its parental line 'Steptoe'. We compared the abundance of AQPs and ABA in cells to determine spatial correlations between AQP abundance and local ABA concentrations in different root tissues. In addition, abundance of AQPs and ABA in cortex cells was related to LpCell. Methods Root hydraulic conductivity (LpRoot) was measured by means of root exudation analyses and LpCell using a cell pressure probe. The abundance of ABA and AQPs in root tissues was assessed through immunohistochemical analyses. Isoform-specific antibodies raised against HvPIP2;1, HvPIP2;2 and HvPIP2;5 were used. Key Results Immunolocalization revealed lower ABA levels in root tissues of Az34 compared with 'Steptoe'. Root hydraulic conductivity (LpRoot) was lower in Az34, yet the abundance of HvPIPs in root tissues was similar in the two genotypes. Root hair formation occurred closer to the tip, while the length of the root hair zone was shorter in Az34 than in 'Steptoe'. Application of external ABA to the root medium of Az34 and 'Steptoe' increased the immunostaining of root cells for ABA and for HvPIP2;1 and HvPIP2;2 especially in root epidermal cells and the cortical cell layer located beneath, parallel to an increase in LpRoot and LpCell. Treatment of roots with Fenton reagent, which inhibits AQP activity, prevented the ABA-induced increase in root hydraulic conductivity. Conclusion Shortly after (<2 h) ABA application to the roots of ABA-deficient barley, increased tissue ABA concentrations and AQP abundance (especially the plasma-membrane localized isoforms HvPIP2;1 and HvPIP2;2) were spatially correlated in root epidermal cells and the cortical cell layer located beneath, in conjunction with increased LpCell of the cortical cells. In contrast, long-term ABA deficiency throughout seedling development affects root hydraulics through other mechanisms, in particular the developmental timing of the formation of root hairs closer to the root tip and the length of the root hair zone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055630PMC
http://dx.doi.org/10.1093/aob/mcw117DOI Listing

Publication Analysis

Top Keywords

hydraulic conductivity
20
root
16
root tissues
16
abundance aqps
12
root hydraulic
12
aba
11
abscisic acid
8
acid aba
8
root cell
8
cell hydraulic
8

Similar Publications

The CRTS (China Railway Track System) II slab ballastless track is widely utilized in high-speed railway construction owing to its excellent structural integrity. However, its interfacial performance deteriorates under high-temperature conditions, leading to significant damage in structural details. Furthermore, the evolution of its performance under these conditions has not been comprehensively studied.

View Article and Find Full Text PDF

Lycium barbarum is an important economic crop in the arid region of Northwest China, and the regulation of irrigation and fertilisation is an important way to improve the quality and yield of Lycium barbarum. To explore the effects of water-fertiliser coupling on photosynthesis, quality and yield of Lycium barbarum under irrigation methods based on predicted crop evapotranspiration (ET), ET was calculated via reference evapotranspiration (ET) predicted on the basis of public weather forecasts, and the irrigation water volume was determined as a proportion of this ET. A field experiment was conducted via a completely randomised experimental design with five irrigation water volumes (W0 (100% ET), W1 (90% ET), W2 (80% ET), W3 (70% ET) and W4 (65% ET)) and three fertiliser application rates (high fertiliser (FH), medium fertiliser (FM) and low fertiliser (FL)).

View Article and Find Full Text PDF

The Atlantic salmon (Salmo salar) is an iconic species of significant ecological and economic importance. Their downstream migration as smolts represents a critical life-history stage that exposes them to numerous challenges, including passage through hydropower plants. Understanding and predicting fine-scale movement patterns of smolts near hydropower plants is therefore essential for adaptive and effective management and conservation of this species.

View Article and Find Full Text PDF

Evaluations of the usability of hydraulic resistance for resisted sprint-training purposes remains rare. Thus, this study compared step-by-step changes in spatiotemporal characteristics during the first 10 m of sprints with varying hydraulic resistance loads. Fourteen male athletes performed 20 m sprints under minimal (10 N, considered as normal sprint), moderate (100 N), and heavy (150 N) hydraulic resistance loads.

View Article and Find Full Text PDF

China's Three-North Protective Forest Program (TNP) is the world's most ambitious afforestation project (ongoing from 1978 to 2050), which aims to increase forest coverage through afforestation and reforestation, protect agriculture, reduce soil erosion, and control desertification. Although TNP has been ongoing for 45 years, its rationales and effects remain uncertain. Here, we conducted a range-wide assessment of TNP by analyzing data from >10,000 scenes of satellite images and >50,000 field survey plots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!