Plant microbiome and its manipulation herald a new era for plant biotechnology with the potential to benefit sustainable crop production. However, studies evaluating the diversity, structure and impact of the microbiota in economic important crops are still rare. Here we describe a comprehensive inventory of the structure and assemblage of the bacterial and fungal communities associated with sugarcane. Our analysis identified 23,811 bacterial OTUs and an unexpected 11,727 fungal OTUs inhabiting the endophytic and exophytic compartments of roots, shoots, and leaves. These communities originate primarily from native soil around plants and colonize plant organs in distinct patterns. The sample type is the primary driver of fungal community assemblage, and the organ compartment plays a major role in bacterial community assemblage. We identified core bacterial and fungal communities composed of less than 20% of the total microbial richness but accounting for over 90% of the total microbial relative abundance. The roots showed 89 core bacterial families, 19 of which accounted for 44% of the total relative abundance. Stalks are dominated by groups of yeasts that represent over 12% of total relative abundance. The core microbiome described here comprise groups whose biological role underlies important traits in plant growth and fermentative processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928081 | PMC |
http://dx.doi.org/10.1038/srep28774 | DOI Listing |
Klin Mikrobiol Infekc Lek
June 2023
Department of Clinical Microbiology, Pardubice Hospital, Czech Repubic, e-mail:
Objectives: The use of nonadherent dressings is part of care for chronic wounds. In this paper, we present the results of in vitro activity of several such dressings on bacteria most commonly found in chronic wounds.
Material And Methods: Selected bacterial strains were isolated from chronic wounds of patients in Pardubice Hospital in the period from February to May 2022.
Environ Sci Pollut Res Int
January 2025
Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Ciprofloxacin (CIP) is an extensively used broad-spectrum, fluoroquinolone antibiotic used for treating diverse bacterial infections. Effluent treatment plants (ETPs) worldwide lack technologies to detect or remediate antibiotics. CIP reaches the aquatic phase primarily due to inappropriate disposal practices, lack of point-of-use sensing, and preloaded activated charcoal filter at ETPs.
View Article and Find Full Text PDFBackground: Group B streptococcus (GBS) causes neonatal invasive disease, mainly sepsis and meningitis. Understanding the clinical characteristics, laboratory tests, and antibiotic resistance patterns of GBS invasive infections provides reliable epidemiological data for preventing and treating GBS infections.
Methods: Clinical characteristics and laboratory test results from 86 patients with neonatal invasive disease (45 cases of early-onset disease [EOD] and 41 cases of late-onset disease [LOD]) recruited from Fujian Maternity and Child Health Hospital between January 2012 and December 2021 were analyzed.
Background: Cytolytic vaginosis (CV) is a condition characterized by an increase in lactobacilli in the vaginal flora, causing complaints of discharge, itching, dyspareunia, and dysuria. Since there are no antimicrobials in the treatment protocols of CV, the diagnostic and therapeutic criteria of which were first defined by Cibley, differential diagnosis of CV from other vaginitis agents will prevent unnecessary use of antimicrobials and recurrent com-plaints. In our study, we aimed to determine the frequency of CV in patients presenting with vaginitis complaints and the diagnostic accuracy of the diagnostic criteria.
View Article and Find Full Text PDFJ Clin Microbiol
January 2025
Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA.
Unlabelled: Rapid and accurate identification of cultured molds is important to determine clinical significance and therapeutic decision-making. Conventional mold identification uses phenotypic macroscopic and microscopic characterization; however, this can take days or weeks for colony maturity and definitive microscopic structure formation, be limited to genus-level identification, and be misidentified due to morphologic mimics or similarities between closely related species. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) revolutionized bacterial and yeast identification but remains uncommon for molds in part because of limited reference libraries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!