Understanding fracture alteration resulting from geochemical reactions is critical in predicting fluid migration in the subsurface and is relevant to multiple environmental challenges. Here, we present a novel 2.5D continuum reactive transport model that captures and predicts the spatial pattern of fracture aperture change and the development of an altered layer in the near-fracture region. The model considers permeability heterogeneity in the fracture plane and updates fracture apertures and flow fields based on local reactions. It tracks the reaction front of each mineral phase and calculates the thickness of the altered layer. Given this treatment, the model is able to account for the diffusion limitation on reaction rates associated with the altered layer. The model results are in good agreement with an experimental study in which a CO2-acidified brine was injected into a fracture in the Duperow Dolomite, causing dissolution of calcite and dolomite that result in the formation of a preferential flow channel and an altered layer. With an effective diffusion coefficient consistent with the experimentally observed porosity of the altered layer, the model captures the progressive decrease in the dissolution rate of the fast-reacting mineral in the altered layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.6b02184 | DOI Listing |
eNeuro
January 2025
Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705
Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing, and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Cornell University, Ithaca, NY, USA.
Background: Spatial disorientation is an early symptom of Alzheimer's disease (AD). The hippocampus creates a cognitive map, wherein cells form firing fields in specific locations within an environment, termed place cells. Critically, place cells remain stable across visits to an environment, but change their firing rate or field location in a different environment.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of California, Irvine, Irvine, CA, USA.
Background: Alzheimer's disease (AD), characterized by tau lesions and amyloid plaques, has traditionally been investigated within the cortical domain. Recent neuroimaging studies have implicated micro- and macrostructural abnormalities in cortical layers during the progression of AD. While examinations from diverse brain regions have contributed to comprehending the regional severity, these approaches have constrained the ability to delineate cortical alterations in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
Background: Dementia is age-related with a significant genetic contribution, yet genome-wide association studies have not fully accounted for heritability. This discrepancy may in part be due to reliance on SNPs and small indels. Whole-genome sequencing (WGS) data in the Japanese population may reveal population-specific susceptibility loci for dementia.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
Background: Alzheimer's Disease (AD) manifests early in the olfactory system, yet its precise role in the pathophysiology of AD remains elusive. This study aims to elucidate the progression of olfactory dysfunction in AD by investigating the dysregulation of the adenosine 2A receptor (A2AR) and its potential involvement in the formation of abnormal plaques and tangles. A2AR plays a pivotal role in modulating synaptic transmission and neuroinflammation by regulating both neurons and glial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!