Increasing angiogenesis has long been considered a therapeutic target for improving heart function after injury such as acute myocardial infarction. However, gene, protein and cell therapies to increase microvascularization have not been successful, most likely because the studies failed to achieve regulated and concerted expression of pro-angiogenic and angiostatic factors needed to produce functional microvasculature. Here, we report that the transcription factor RBPJ is a homoeostatic repressor of multiple pro-angiogenic and angiostatic factor genes in cardiomyocytes. RBPJ controls angiogenic factor gene expression independently of Notch by antagonizing the activity of hypoxia-inducible factors (HIFs). In contrast to previous strategies, the cardiomyocyte-specific deletion of Rbpj increased microvascularization of the heart without adversely affecting cardiac structure or function even into old age. Furthermore, the loss of RBPJ in cardiomyocytes increased hypoxia tolerance, improved heart function and decreased pathological remodelling after myocardial infarction, suggesting that inhibiting RBPJ might be therapeutic for ischaemic injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931341PMC
http://dx.doi.org/10.1038/ncomms12088DOI Listing

Publication Analysis

Top Keywords

rbpj controls
8
heart function
8
myocardial infarction
8
pro-angiogenic angiostatic
8
rbpj
5
notch-independent rbpj
4
controls angiogenesis
4
angiogenesis adult
4
heart
4
adult heart
4

Similar Publications

Unlabelled: Cartilage and joint damage can lead to cartilage degeneration. Bone marrow mesenchymal stem cells (BMSCs) have the potential to address cartilage damage. Hence, this study probed the mechanism of BMSC-extracellular matrix (BMSC-ECM) in promoting damaged chondrocyte repair by regulating the Notch1/RBPJ pathway.

View Article and Find Full Text PDF

Objectives: To observe the role of miR-139-5p and Notch1 signaling pathway in regulation of homing of bone mesenchymal stem cells (BMSCs) of asthmatic rats.

Methods: Normal rat BMSCs were co-cultured with bronchial epithelial cells from normal or asthmatic rats, followed by transfection with miR-139-5p mimics or a negative control sequence. The changes in cell viability and cell cycle were analyzed, and the cellular expressions of CXCR4 and SDF-1 were detected using immunofluorescence staining.

View Article and Find Full Text PDF

Reciprocal inhibition of NOTCH and SOX2 shapes tumor cell plasticity and therapeutic escape in triple-negative breast cancer.

EMBO Mol Med

December 2024

Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Swiss Cancer Center Leman (SCCL), Station 19, CH-1015, Lausanne, Switzerland.

Cancer cell plasticity contributes significantly to the failure of chemo- and targeted therapies in triple-negative breast cancer (TNBC). Molecular mechanisms of therapy-induced tumor cell plasticity and associated resistance are largely unknown. Using a genome-wide CRISPR-Cas9 screen, we investigated escape mechanisms of NOTCH-driven TNBC treated with a gamma-secretase inhibitor (GSI) and identified SOX2 as a target of resistance to Notch inhibition.

View Article and Find Full Text PDF
Article Synopsis
  • RBPJ is a protein important for the immune system, and this study looked at how it relates to rheumatoid arthritis (RA).
  • The research involved 83 RA patients and 70 healthy people, measuring RBPJ levels in their blood using a special test.
  • Results showed that RA patients had lower RBPJ levels, which related to worse disease symptoms and involved various immune system pathways.
View Article and Find Full Text PDF

Notch signaling regulates macrophage-mediated inflammation in metabolic dysfunction-associated steatotic liver disease.

Immunity

October 2024

Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Inserm U1015, Gustave Roussy, Villejuif 94800, France; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Republic of Singapore; SingHealth Duke-NUS Academic Medical Centre, Translational Immunology Institute, Singapore 169856, Republic of Singapore. Electronic address:

The liver macrophage population comprises resident Kupffer cells (KCs) and monocyte-derived macrophages with distinct pro- or anti-inflammatory properties that affect the severity and course of liver diseases. The mechanisms underlying macrophage differentiation and functions in metabolic dysfunction-associated steatotic liver disease and/or steatohepatitis (MASLD/MASH) remain mostly unknown. Using single-cell RNA sequencing (scRNA-seq) and fate mapping of hepatic macrophage subpopulations, we unraveled the temporal and spatial dynamics of distinct monocyte and monocyte-derived macrophage subsets in MASH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!