Background: Somatic mutations in cancer cells affect various genomic elements disrupting important cell functions. In particular, mutations in DNA binding sites recognized by transcription factors can alter regulator binding affinities and, consequently, expression of target genes. A number of promoter mutations have been linked with an increased risk of cancer. Cancer somatic mutations in binding sites of selected transcription factors have been found under positive selection. However, action and significance of negative selection in non-coding regions remain controversial.
Results: Here we present analysis of transcription factor binding motifs co-localized with non-coding variants. To avoid statistical bias we account for mutation signatures of different cancer types. For many transcription factors, including multiple members of FOX, HOX, and NR families, we show that human cancers accumulate fewer mutations than expected by chance that increase or decrease affinity of predicted binding sites. Such stability of binding motifs is even more exhibited in DNase accessible regions.
Conclusions: Our data demonstrate negative selection against binding sites alterations and suggest that such selection pressure protects cancer cells from rewiring of regulatory circuits. Further analysis of transcription factors with conserved binding motifs can reveal cell regulatory pathways crucial for the survivability of various human cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4928157 | PMC |
http://dx.doi.org/10.1186/s12864-016-2728-9 | DOI Listing |
Acta Pharmacol Sin
January 2025
Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
Gastric cancer is a malignant gastrointestinal disease characterized by high morbidity and mortality rates worldwide. The occurrence and progression of gastric cancer are influenced by various factors, including the abnormal alternative splicing of key genes. Recently, RBM39 has emerged as a tumor biomarker that regulates alternative splicing in several types of cancer.
View Article and Find Full Text PDFEMBO J
January 2025
Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
The complement system and neutrophils constitute the two main pillars of the host innate immune defense against infection by bacterial pathogens. Here, we identify T-Mac, a novel virulence factor of the periodontal pathogen Treponema denticola that allows bacteria to evade both defense systems. We show that T-Mac is expressed as a pre-protein that is cleaved into two functional units.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
Transcription factors (TFs) recognize specific bases within their DNA-binding motifs, with each base contributing nearly independently to total binding energy. However, the energetic contributions of particular dinucleotides can deviate strongly from the additive approximation, indicating that some TFs can specifically recognize DNA dinucleotides. Here we solved high-resolution (<1 Å) structures of MYF5 and BARHL2 bound to DNAs containing sets of dinucleotides that have different affinities to the proteins.
View Article and Find Full Text PDFStructure
January 2025
Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India. Electronic address:
In this issue of Structure, Soteriou et al. use cell biology, in vitro reconstitution approaches, and molecular dynamics (MD) simulations to characterize the membrane association of AKT1. The authors show that the AKT1 pleckstrin homology domain contains two essential and cooperative PI(3,4,5)P-binding sites that enable stable membrane binding of AKT1 in the requisite orientation required for effective downstream signaling.
View Article and Find Full Text PDFComput Biol Chem
December 2024
Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
The mesenchymal stem cell (MSC) secretome plays a pivotal role in shaping the tumor microenvironment, influencing both cancer progression and potential therapeutic outcomes. In this research, by using publicly available dataset GSE196312, we investigated the role of MSC secretome on breast cancer cell gene expression. Our results raveled differentially expressed genes, including the upregulation of Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (PREX1), C-C Motif Chemokine Ligand 28 (CCL28), and downregulation of Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type I Alpha 3 Chain (COL1A3), Collagen Type III Alpha 1 Chain (COL3A1), which contributing to extra cellular matrix (ECM) weakening and promoting cell migration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!