AI Article Synopsis

  • - The study examined how uncoupling protein 2 (UCP2) levels changed in rat hearts preserved at low temperatures for 3-12 hours, revealing that UCP2 expression increased as preservation time lengthened.
  • - The use of UCP2 inhibitor genipin prevented cardiac dysfunction and ATP production decline but did not affect mitochondrial reactive oxygen species (ROS), while SIRT1 protein levels decreased after hypothermic preservation.
  • - Resveratrol, a SIRT1 activator, counteracted the increase in UCP2 and improved cardiac function during preservation, suggesting that regulating UCP2 through the SIRT1 pathway may provide protective effects for preserved hearts.

Article Abstract

In the present study, the alterations in uncoupling protein 2 (UCP2) expression following hypothermic preservation in rat hearts were investigated. Isolated rat hearts were preserved in Celsior solution for 3‑12 h followed by 60 min of reperfusion. The cardiac function was evaluated using the Langendorff perfusion system. UCP2 and silent mating type information regulation 2 homolog 1 (SIRT1) proteins were detected by western blot analysis. The ATP production and mitochondrial reactive oxygen species (ROS) levels were assessed. Subsequent to preservation in ice‑cold Celsior solution for 3‑12 h, the UCP2 protein expression in rat hearts was observed to increase in a time‑dependent manner. The UCP2 inhibitor genipin inhibited the hypothermic preservation‑induced cardiac dysfunction, prevented a decline in ATP production induced by 9 h of preservation, however had no effect on the hypothermic preservation‑induced increase in mitochondrial ROS levels. Compared with the control group, the SIRT1 protein expression in rat hearts reduced following hypothermic preservation. Compared with the 9‑h preservation group, Celsior solution supplemented with the SIRT1 activator resveratrol (20 or 40 µmol/l) inhibited UCP2 protein overexpression, prevented the decline in ATP production and resulted in an improvement cardiac function. The SIRT1 inhibitor EX‑527 abolished the resveratrol‑induced inhibition of UCP2 overexpression and cardiac protection in the hypothermic preserved rat heart. These observations suggest that downregulation of UCP2 expression in the hypothermic preserved rat heart in part initiated the protective mechanism via the SIRT1 pathway.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2016.5436DOI Listing

Publication Analysis

Top Keywords

rat hearts
20
hypothermic preserved
12
preserved rat
12
celsior solution
12
atp production
12
ucp2 expression
8
expression hypothermic
8
hypothermic preservation
8
solution 3‑12 h
8
cardiac function
8

Similar Publications

5-Fluorouracil (5-FU) is a chemotherapeutic that is used to treat solid tumors. However, 5-FU is associated with several side effects, including cardiotoxicity. Considering the importance of the intrinsic cardiac nervous system (ICNS) for the heart and that little is known about effects of 5-FU on this nervous system plexus, the purpose of the present study was to evaluate effects 5-FU at a low dose on the ICNS and oxidative and inflammatory effects in the heart in Wistar rats.

View Article and Find Full Text PDF

A Comparative Study Between Cold Static Storage and Normothermic Ex-Situ Donor Heart Preservation in a Rat Model of Heterotopic Heart Transplantation.

J Surg Res

January 2025

Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Republic of Korea; Extracorporeal Circulation Research Team, Chonnam National University Hospital, Gwangju, Republic of Korea. Electronic address:

Introduction: Cold static storage (CSS) and normothermic ex-situ preservation are the most widely used donor heart preservation techniques worldwide. The current study compares both CSS and normothermic ex-situ preservation methods in terms of graft performance, morphologic changes, and acute immune response in an experimental model.

Method And Materials: Twenty rats underwent heterotopic abdominal heart transplantation after 2 h of CSS (group 1; n = 10) or normothermic ex-situ perfusion (group 2; n = 10).

View Article and Find Full Text PDF

Gentisic acid protects Sprague-Dawley rats from myocardial infarction through reversing electrocardiographical, biochemical and histopathological abnormalities.

Biochem Biophys Res Commun

January 2025

Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, KPK, Pakistan. Electronic address:

Gentisic acid (GA), a cytochrome P450 metabolite of the antiplatelet drug aspirin, exhibits smooth muscle relaxant, antiatherogenic, and antioxidant activities. It also has a protective role in hypertrophic heart failure, suggesting its role in the management of myocardial infarction (MI). This study aimed to explore the protective activity of GA in isoproterenol (ISO)-induced MI in Sprague-Dawley (SD) rats in-vivo, followed by mechanistic investigation ex-vivo.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!