A series of dinuclear Ir(iii)/Re(i) complexes has been prepared based on a family of symmetrical bridging ligands containing two bidentate N,N'-chelating pyrazolyl-pyridine termini, connected by a central aromatic or aliphatic spacer. The Ir(iii) termini are based on {Ir(F2ppy)2}(+) units (where F2ppy is the cyclometallating anion of a fluorinated phenylpyridine) and the Re(i) termini are based on {Re(CO)3Cl} units. Both types of terminus are luminescent, with the Ir-based unit showing characteristic strong, structured phosphorescence in the blue region (maximum 452 nm) with a triplet excited state energy of 22 200 cm(-1) and the Re-based unit showing much weaker and lower-energy phosphorescence (maximum 530 nm) with a triplet excited state energy of 21 300 cm(-1). The energy gradient between the two excited states allows for partial Ir→Re photoinduced energy-transfer, with substantial (but incomplete) quenching of the higher-energy Ir-based emission component and sensitised emission - evidenced by an obvious grow-in component - on the lower-energy Re-based emission. The Ir→Re energy-transfer rate constants vary over the range 1-8 × 10(7) s(-1) depending on the bridging ligand: there is no simple correlation between bridging ligand structure and energy-transfer rate, possibly because this will depend substantially on the conformation of these flexible molecules in solution. To test the role of ligand conformation further, we investigated a complex in which the bridging chain is a (CH2CH2O)6 unit whose conformation is known to be solvent-polarity dependent, with such chains adopting an open, elongated conformation in water and more compact, folded conformations in organic solvents. There was a clear link between the rate and extent of Ir→Re energy-transfer which reduced in polar solvents as the chain became elongated and the Ir/Re separation was larger; and increased in less polar solvents as the chain adopted a more compact conformation and the Ir/Re separation was reduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6dt01614f | DOI Listing |
J Am Chem Soc
January 2025
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China.
Hydroxyl radical (·OH) plays a crucial role in atmospheric chemistry, regulating the oxidative potential and aerosol composition. This study reveals an unprecedented source of ·OH in the atmosphere: mineral dust-bearing microdroplet aerosols. We demonstrate that Kaolin clay particles in microdroplet aerosols trigger rapid ·OH production upon solar irradiation, with rates reaching an order of at least 10 M s.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211 PR China. Electronic address:
The development of efficient photocatalysts inspired by natural photosynthesis has drawn considerable interest for sustainable hydrogen (H) production. Among the various strategies for enhancing H evolution, constructing step-scheme (S-scheme) heterojunctions has attracted extensive interest, thanks to their limited charge recombination and enhanced charge transport in comparison to the traditional photocatalytic systems. Herein, we report the engineering of a novel S-scheme heterojunction by integrating ultrathin ZnInS (ZIS) nanosheets with MOF-derived N-doped NiO porous microrods (ZIS/N-NiO) toward superior photocatalytic behaviors.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China. Electronic address:
Tinidazole (TNZ), a common nitroimidazole antibiotic, is pervasive in aquatic ecosystems, posing potential threats to marine organisms. The environmental fate of TNZ, particularly under solar irradiation, and the associated secondary risks are not well characterized. Herein, the photochemical reactivity of TNZ and four other typical nitroimidazoles (i.
View Article and Find Full Text PDFDalton Trans
January 2025
Chemical Sciences Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun-248005, India.
Expression of Concern for 'Photo-induced reduction of CO using a magnetically separable Ru-CoPc@TiO@SiO@FeO catalyst under visible light irradiation' by Pawan Kumar , ., 2015, , 4546-4553, https://doi.org/10.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
The synthesis of polymers with well-defined composition, architecture, and functionality has long been a focal area of research in the field of polymer chemistry. The advancement of controlled radical polymerization (CRP) has facilitated the synthesis of precise polymers, which are endowed with new properties and functionalities, thereby exhibiting a wide range of applications. However, radical polymerization faces several challenges, such as oxygen intolerance, and common thermal initiation methods may lead to side reactions and depolymerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!