Aim: To estimate the combined action of C60 fullerene and light irradiation on viability of L1210 leukemic cells, nitric oxide (NO) generation, p38 mitogen-activated protein kinase (MAPK) activity and cell cycle distribution.
Methods: Cell viability was assessed by MTT test. Light-emitting diode lamp (λ = 410-700 nm, 2.45 J/cm(2) ) was used for C60 fullerene photoexcitation. Nitrite level and NO-synthase activity were measured by Griess reaction and by conversion of L-arginine to L-citrulline, respectively. p38 MAPK activity was assessed by Western blot analysis. Cell cycle distribution was determined by flow cytometry.
Results: It was shown that light irradiation of C60 fullerene-treated L1210 cells was accompanied by 55% decrease of their viability at 48 h of culture. Nitrite level measured as an index of reactive NO generation was increased at the early period after C60 fullerene photoexcitation due to activation of both constitutive and inducible NO-synthase isoforms. The simultaneous activation of p38 MAPK was detected. Accumulation of L1210 cells in sub-G1 phase of cell cycle was observed after C60 fullerene photoexcitation.
Conclusion: Photoexcited C60 fullerene exerts cytotoxic effect, at least in part, through triggering production of reactive NO species and activation of p38 kinase apoptotic pathways in L1210 leukemic cells.
Download full-text PDF |
Source |
---|
Nanotechnology
December 2024
Institute of Chemistry and Biotechnology, Technical University of Ilmenau, Weimarer Str. 25, Ilmenau, 98693, GERMANY.
The powerful antioxidant properties of C60 fullerenes have been widely used in biomedical nanotechnology. Owing to the negative effects of free radicals in oxidative stress processes, antioxidants are required to protect injured muscles. Here, the effect of water-soluble C60 fullerenes (daily oral dose 1 mg/kg) on the process of restoration of contractile activity of skeletal muscle of rats (muscle gastrocnemius) 15 days after the initiation of open trauma of different severity was studied for the first time.
View Article and Find Full Text PDFFront Chem
November 2024
Department of Functional Materials and Electronics, FTMC, State Research Institute Center for Physical Sciences and Technology, Vilnius, Lithuania.
Medical device-associated biofilm infections continue to pose a significant challenge for public health. These infections arise from biofilm accumulation on the device, hampering the antimicrobial treatment. In response, significant efforts have been made to design functional polymeric devices that possess antimicrobial properties, limiting or preventing biofilm formation.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 98693 Ilmenau, Germany.
Traumatic skeletal muscle injury is a complex pathology caused by high-energy trauma to muscle tissue. Previously, a positive effect was established when C fullerene was administered against the background of muscle ischemia, mechanical muscle injury, and other muscle dysfunctions, which probably protected the muscle tissue from damage caused by oxidative stress. Using tensiometry and biochemical analysis, the biomechanical parameters of skeletal muscle contraction and biochemical indices of the blood of rats 15 days after traumatic injury of the soleus muscle caused by myocyte destruction by compression were studied.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
School of Science, Northeast Electric Power University, Jilin 131200, China.
Confining protons into an enclosed carbon cage is expected to give rise to unique electronic properties for both the inner proton and the outer cage. In this work, we systematically investigated the geometric and electronic structures of cationic X@C (X = H, HO, and NH), and their corresponding neutral species (X = HO, NH), by quantum chemical density functional theory calculations. We show that C can trap HO, NH, HO and NH at the cage center and only slightly influence their geometries.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
October 2024
Laboratory of molecular biology, Research Centre for Medical Genetics, 115478 Moscow, Russia.
Background: The new synthesized water-soluble derivatives of C fullerenes are of a great interest to researchers since they can potentially be promising materials for drug delivery, bioimaging, biosonding, and tissue engineering. Surface functionalization of fullerene derivatives changes their chemical and physical characteristics, increasing their solubility and suitability for different biological systems applications, however, any changes in functionalized fullerenes can modulate their cytotoxicity and antioxidant properties. The toxic or protective effect of fullerene derivatives on cells is realized through the activation or inhibition of genes and proteins of key signaling pathways in cells responsible for regulation of cellular reactive oxygen species (ROS) level, proliferation, and apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!