Assays for mismatch discrimination and detection of single nucleotide variations by hybridization-controlled assembly of liposomes, which do not require tedious surface chemistry, are versatile for both DNA and RNA targets. We report herein a comprehensive study on different DNA and LNA (locked nucleic acids) probe designs, including membrane-anchoring requirements, studies on different probes and target lengths (including overhangs), DNA and RNA targets (including sequences associated with pathogens) for lipidated nucleic acids (LiNAs). Advantages and limitations of the liposome assembly based assay in the context of mismatch discrimination and SNP detection are presented. The advantages of membrane-anchored LiNA-probes compared to chemically attached probes on solid nanoparticles (e.g. gold nanoparticles) are described. Key functionalities such as non-covalent attachment of LiNA probes without the need for long spacers and the inherent mobility of membrane-anchored probes in lipid-bilayer membranes will be described for several different probe designs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6ob01120a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!