Extracellular Release of Annexin A2 is Enhanced upon Oxidative Stress Response via the p38 MAPK Pathway after Low-Dose X-Ray Irradiation.

Radiat Res

a   Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan and.

Published: July 2016

The extracellular microenvironment affects cellular responses to various stressors including radiation. Annexin A2, which was initially identified as an intracellular molecule, is also released into the extracellular environment and is known to regulate diverse cell surface events, however, the molecular mechanisms underlying its release are not well known. In this study, we found that in cultured human cancer and non-cancerous cells an extracellular release of annexin A2 was greatly enhanced 1-4 h after a single 20 cGy X-ray dose, but not after exposure to ultraviolet C (UVC) radiation. Extracellular release of annexin A2 was also enhanced after H2O2 and nicotine treatments, which was suppressed by pretreatment with the antioxidant, N-acetyl cysteine. Among the oxidative stress pathway molecules examined in HeLa cells, AMP-activated protein kinase α (AMPKα) and p38 mitogen-activated protein kinase (MAPK) were mostly activated by low-dose X-ray radiation, and the p38 MAPK inhibitor, SB203580, but not compound C (an AMPKα inhibitor), suppressed the enhancement of the annexin A2 extracellular release after low-dose X irradiation. In addition, the enhancement was suppressed in the cells in which p38α MAPK was downregulated by siRNA. HeLa cells and human cultured cells preirradiated with 20 cGy or precultured in media from low-dose X-irradiated cells showed an increase in resistance to radiation-induced cell death, and the increase was suppressed by treatment of the irradiated cell-derived media with anti-annexin A2 antibodies. In addition, extracellularly added recombinant annexin A2 conferred cellular radiation resistance. These results indicate that an oxidative stress-activated pathway via p38 MAPK was involved in the extracellular release of annexin A2, and this pathway was stimulated by low-dose X-ray irradiation. Furthermore, released annexin A2 may function in low-dose ionizing radiation-induced responses, such as radioresistance.

Download full-text PDF

Source
http://dx.doi.org/10.1667/RR14277.1DOI Listing

Publication Analysis

Top Keywords

extracellular release
20
release annexin
16
p38 mapk
12
low-dose x-ray
12
annexin
8
annexin enhanced
8
oxidative stress
8
x-ray irradiation
8
hela cells
8
protein kinase
8

Similar Publications

Characterisation of Castration-Resistant Cell-Derived Exosomes and Their Effect on the Metastatic Phenotype.

Cancers (Basel)

January 2025

Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Campus Científico-Tecnológico, Universidad de Alcalá, 28805 Alcalá de Henares, Spain.

Background/objectives: Prostate cancer (PCa) is characterised by its progression to a metastatic and castration-resistant phase. Prostate tumour cells release small extracellular vesicles or exosomes which are taken up by target cells and can potentially facilitate tumour growth and metastasis. The present work studies the effect of exosomes from cell lines that are representative of the different stages of the disease on the tumoral phenotype of PC3 cells.

View Article and Find Full Text PDF

Cooperative and Independent Functionality of tmRNA and SmpB in : A Multifunctional Exploration Beyond Ribosome Rescue.

Int J Mol Sci

January 2025

Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.

The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the and genes in various pathogens leads to different phenotypic changes, indicating that they have both cooperative and independent functionalities. This study aimed to clarify the functional relationships between tmRNA and SmpB in a pathogen that poses threats in aquaculture and human health.

View Article and Find Full Text PDF

Melatonin is a hormone released by the pineal gland that regulates the sleep-wake cycle. It has been widely studied for its therapeutic effects on Alzheimer's disease (AD), particularly through the amyloidosis, oxidative stress, and neuroinflammation pathways. Nevertheless, the mechanisms through which it exerts its neuroprotective effects in AD are still largely unknown.

View Article and Find Full Text PDF

Extracellular Vesicles: Advanced Tools for Disease Diagnosis, Monitoring, and Therapies.

Int J Mol Sci

December 2024

Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain.

Extracellular vesicles (EVs) are a heterogeneous group of membrane-encapsulated vesicles released by cells into the extracellular space. They play a crucial role in intercellular communication by transporting bioactive molecules such as proteins, lipids, and nucleic acids. EVs can be detected in body fluids, including blood plasma, urine, saliva, amniotic fluid, breast milk, and pleural ascites.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) formation is a key process in inflammatory diseases like gout, but the underlying molecular mechanisms remain incompletely understood. This study aimed to establish a model to examine the formation of NETs induced by monosodium urate (MSU) and phorbol 12-myristate 13-acetate (PMA) and to elucidate their molecular pathways. Laser confocal microscopy was used to visualize NET formation, while flow cytometry was employed to detect reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!