In this work, a novel sensing nanocomposite with highly dispersed platinum nanoparticles (PtNPs) on carbon nanotubes (CNTs) functionalized with polyethyleneimine (PEI) has been developed as a platform for immobilization of diclofenac (DIF) aptamer. PtNPs/PEI/CNTs nanocomposite provided abundant NH2 groups for the immobilization of DIF-specific aptamer. Attachment of DIF-aptamer at the surface of modified electrode was performed through the formation of phosphoramidate bonds between the amino group of PEI and the phosphate group of the aptamer at the 5' end. Nickel hexacyanoferrate (NiHCF) as signal probe was electrodeposited at the surface of nanocomposite by a simple electrodeposition method including two consecutive procedures. Under optimal conditions, DIF was detected by impedance spectroscopy (EIS) quantitatively. By adding DIF as the target at the surface of modified electrode, the aptamer specifically binds to DIF and its end folds into a DIF-binding junction, which leads to retarding the interfacial electron transfer of the probe at the surface of modified electrode. Sensitive quantitative detection of DIF was carried out by monitoring the increase of charge transfer resistance (Rct) by increasing the DIF concentration. The proposed aptasensor showed a good detection range from 10 to 200 nM with an unprecedented detection limit of 2.7 nM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2016.06.013DOI Listing

Publication Analysis

Top Keywords

surface modified
12
modified electrode
12
dif
6
design folding-based
4
folding-based impedimetric
4
impedimetric aptasensor
4
aptasensor determination
4
determination nonsteroidal
4
nonsteroidal anti-inflammatory
4
anti-inflammatory drug
4

Similar Publications

Urotropine, an antibacterial agent to treat urinary tract bacterial infections, can be also considered as a repurposed drug with formaldehyde-mediated anticancer activity. Recently, we have synthesized urotropine surface modified iron oxide nanoparticles (URO@FeO NPs) with improved colloidal stability and limited cytotoxicity against human fibroblasts. In the present study, we have investigated URO@FeO NP-mediated responses in a panel of forty phenotypically different breast cancer cell lines along with three non-cancerous corresponding cell lines.

View Article and Find Full Text PDF

VG@nAu-based fluorescent biosensor for grading Alzheimer's disease by detecting P-tau181 protein in clinical samples.

Anal Chim Acta

February 2025

Institute for Advanced Study (IAS), College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China. Electronic address:

Background: Alzheimer's disease (AD) is a neurodegenerative disorder with a very long duration, posing a serious threat to people's life and health. To date, no medicine that can cure or reverse the disease has been developed or reported, so early diagnosis and timely intervention are essential. The concentration of Phosphorylated tau181 (P-tau181) in blood has been approved by FDA as a standard for assisting clinical diagnosis of AD.

View Article and Find Full Text PDF

Gold nanorod in silver tetrahedron: Cysteamine mediated synthesis of SERS probes with embedded internal markers for AFP detection.

Anal Chim Acta

February 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China. Electronic address:

Background: Plasmonic core-shell nanostructures with embedded internal markers used as Raman probes have attracted great attention in surface-enhanced Raman scattering (SERS) immunoassay for cancer biomarkers due to their excellent uniform enhancement. However, current core-shell nanostructures typically exhibit a spherical shape and are coated with a gold shell, resulting in constrained local field enhancement.

Results: In this work, we prepared a core-shell AuNR@BDT@Ag structure by depositing silver on the surface of Raman reporter-modified gold nanorods (AuNR).

View Article and Find Full Text PDF

Photothermal/photodynamic synergistic antibacterial Nanocellulose film modified with antioxidant MXene-PANI Nanosheets.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

TEMPO-CNF film modified by two-dimension transition metal MXene has certain antibacterial properties. However, the problem of long-lasting stability greatly restricts the feasibility of long-term use of the composite film. Here, we introduced polyaniline (PANI) as a modifying molecule, which was electrostatically adsorbed on the surface of the MXene nanosheets to prevent its self-stacking and delay its oxidation.

View Article and Find Full Text PDF

Passive Radiant Cooling and Heating are green and sustainable methods of radiant heat management without consuming additional energy. However, the absorption of sunlight and poor insulation of materials can reduce radiative cooling and also affect radiative heating performance. Herein, we have constructed porous hierarchical dual-mode silk nanofibrous aerogel (SNF) films with high mechanical toughness and stability using silk nanofibers/GO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!