Aim: To evaluate antidepressant-like effect of memantine in a rat model.
Methods: Male Wistar rats were treated intraperitoneally with either vehicle, memantine (10 mg/kg) or imipramine (20 mg/kg), for 3 wk. Twenty-four hour after the last treatment animals were challenged with quinpirole (0.3 mg/kg s.c.) and tested for motor activity. After 1 h habituation to the motility cages, the motor response was recorded for the following 45-min and the data were collected in 5-min time bins.
Results: As expected, chronic treatment with imipramine potentiated the locomotor stimulant effect of quinpirole. On the contrary, chronic memantine administration failed to induce the behavioral supersensitivity to the dopamine agonist.
Conclusion: The results show that memantine, at variance with antidepressant treatments, fails to induce dopaminergic behavioral supersensitivity. This observation is consistent with the results of preclinical and clinical studies suggesting that memantine does not have an acute antidepressant action but does have an antimanic and mood-stabilizing effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4919260 | PMC |
http://dx.doi.org/10.5498/wjp.v6.i2.215 | DOI Listing |
Int J Biol Macromol
September 2024
School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China. Electronic address:
Conductive hydrogels as ideal candidate materials for flexible sensors have exhibited many promising applications. However, complex application environments, such as low temperatures or underwater conditions, have introduced new requirements for hydrogel sensors. Herein, a high-performance conductive hydrogel based on carboxymethyl cellulose-polyaniline (CMC-PANI) submicron spheres, poly (vinyl alcohol) (PVA) and phytic acid (PA) was designed and fabricated via a dual design strategy.
View Article and Find Full Text PDFMikrochim Acta
August 2024
Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China.
Mikrochim Acta
August 2024
Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, College of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China.
An upconversion fluorescence sensing platform was developed with upconversion nanoparticles (UCNPs) as energy donors and gold nanoparticles (AuNPs) as energy acceptors, based on the FRET principle. They were used for quantitative detection of uranyl ions (UO) by amplifying the signal of the hybrid chain reaction (HCR). When UO are introduced, the FRET between AuNPs and UCNPs can be modulated through a HCR in the presence of high concentrations of sodium chloride.
View Article and Find Full Text PDFBehav Brain Res
September 2024
Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY 40504, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40504, United States.
An escalating trend of antipsychotic drug use in children with ADHD, disruptive behavior disorder, or mood disorders has raised concerns about the impact of these drugs on brain development. Since antipsychotics chiefly target dopamine receptors, it is important to assay the function of these receptors after early-life antipsychotic administration. Using rats as a model, we examined the effects of early-life risperidone, the most prescribed antipsychotic drug in children, on locomotor responses to the dopamine D/D receptor agonist, apomorphine, and the D/D receptor agonist, quinpirole.
View Article and Find Full Text PDFSpinal circuitry produces the rhythm and patterning of locomotion. However, both descending and sensory inputs are required to initiate and adapt locomotion to the environment. Spinal cord injury (SCI) disrupts descending controls of the spinal cord, producing paralysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!