Motivation: Exome sequencing studies have facilitated the detection of causal genetic variants in yet-unsolved Mendelian diseases. However, the identification of disease causal genes among a list of candidates in an exome sequencing study is still not fully settled, and it is often difficult to prioritize candidate genes for follow-up studies. The inheritance mode provides crucial information for understanding Mendelian diseases, but none of the existing gene prioritization tools fully utilize this information.
Results: We examined the characteristics of Mendelian disease genes under different inheritance modes. The results suggest that Mendelian disease genes with autosomal dominant (AD) inheritance mode are more haploinsufficiency and de novo mutation sensitive, whereas those autosomal recessive (AR) genes have significantly more non-synonymous variants and regulatory transcript isoforms. In addition, the X-linked (XL) Mendelian disease genes have fewer non-synonymous and synonymous variants. As a result, we derived a new scoring system for prioritizing candidate genes for Mendelian diseases according to the inheritance mode. Our scoring system assigned to each annotated protein-coding gene (N = 18 859) three pathogenic scores according to the inheritance mode (AD, AR and XL). This inheritance mode-specific framework achieved higher accuracy (area under curve = 0.84) in XL mode.
Conclusion: The inheritance-mode specific pathogenicity prioritization (ISPP) outperformed other well-known methods including Haploinsufficiency, Recessive, Network centrality, Genic Intolerance, Gene Damage Index and Gene Constraint scores. This systematic study suggests that genes manifesting disease inheritance modes tend to have unique characteristics.
Availability And Implementation: ISPP is included in KGGSeq v1.0 (http://grass.cgs.hku.hk/limx/kggseq/), and source code is available from (https://github.com/jacobhsu35/ISPP.git).
Contact: mxli@hku.hkSupplementary information: Supplementary data are available at Bioinformatics online.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btw381 | DOI Listing |
Stat Med
February 2025
Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas, USA.
Multi-gene panel testing allows efficient detection of pathogenic variants in cancer susceptibility genes including moderate-risk genes such as ATM and PALB2. A growing number of studies examine the risk of breast cancer (BC) conferred by pathogenic variants of these genes. A meta-analysis combining the reported risk estimates can provide an overall estimate of age-specific risk of developing BC, that is, penetrance for a gene.
View Article and Find Full Text PDFClin Genet
January 2025
Department of Medical Genetics, Medical Faculty, Aksaray University, Aksaray, Turkiye.
Inherited retinal diseases (IRDs) constitute a heterogeneous group of clinically and genetically diverse conditions, standing as a primary cause of visual impairment among individuals aged 15-45, with an estimated incidence of 1:2000. Our study aimed to comprehensively evaluate the genetic variants underlying IRDs in the Turkish population. This study included 50 unrelated Turkish IRD patients and their families.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Würzburg, Germany.
Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi 756-0884, Japan.
The application of regenerative therapy through stem cell transplantation has emerged as a promising avenue for the treatment of diabetes mellitus (DM). Transplanted tissue homeostasis is affected by disturbances in the clock genes of stem cells. The aim of this study is to investigate the diurnal variation in mitochondrial genes and function after transplantation of adipose-derived mesenchymal stem cells (T2DM-ADSCs) from type 2 diabetic patients into immunodeficient mice.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus.
Non-invasive prenatal testing (NIPT) has been widely adopted for the screening of chromosomal abnormalities; however, its adoption for monogenic disorders, such as β-thalassaemia, has proven challenging. Haemoglobinopathies are the most common monogenic disorders globally, with β-thalassaemia being particularly prevalent in Cyprus. This study introduces a non-invasive prenatal haplotyping (NIPH) assay for β-thalassaemia, utilizing cell-free DNA (cfDNA) from maternal plasma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!