Two-dimensional (2D) layered materials exhibit unique optoelectronic properties at atomic thicknesses. In this paper, we fabricated metal-semiconductor-metal based photodetectors using layered gallium selenide (GaSe) with different thicknesses. The electrical and optoelectronic properties of the photodetectors were studied, and these devices showed good electrical characteristics down to GaSe flake thicknesses of 30 nm. A photograting effect was observed in the absence of a gate voltage, thereby implying a relatively high photoresponsivity. Higher values of the photoresponsivity occurred for thicker layers of GaSe with a maximum value 0.57 AW(-1) and external quantum efficiency of of 132.8%, and decreased with decreasing GaSe flake thickness. The detectivity was 4.05 × 10(10) cm Hz(1/2) W(-1) at 532 nm laser wavelength, underscoring that GaSe is a promising p-type 2D material for photodetection applications in the visible spectrum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/27/32/325202 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Ruhr-Universität Bochum: Ruhr-Universitat Bochum, Inorganic Chemistry, Universitaetsstrasse 150, 44801, Bochum, GERMANY.
Precise control over low-dimensional materials holds an immense potential for their applications in sensing, imaging and information processing. The controlled introduction of sp3 quantum defects (color centers) can be used to tailor the optoelectronic properties of single-walled carbon nanotubes (SWCNTs) in the tissue transparency (> 800 nm) and the telecommunication window. However, an uncontrolled functionalization of SWCNTs with defects leads to a loss of the NIR fluorescence.
View Article and Find Full Text PDFPhotosynth Res
January 2025
State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Maize (Zea mays L.) performs highly efficient C photosynthesis by dividing photosynthetic metabolism between mesophyll and bundle sheath cells. In vivo physiological measurements are indispensable for C photosynthesis research as photosynthetic activities are easily interrupted by leaf section or cell isolation.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Physical Science and Technology, School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
Metal halides are widely applied in solid-state lighting (SSL), optoelectronic devices, information encryption, and near-infrared (NIR) detection due to their superior photoelectric properties and tunable emission. However, single-component phosphors that can be efficiently excited by light-emitting diode (LED) chips and cover both the visible (VIS) and NIR emission regions are still very rare. To address this issue, (TPA)ZnBr:Sn/Mn (TPA = [(CHCHCH)N]) phosphors were synthesized by using the solvent evaporation method.
View Article and Find Full Text PDFDalton Trans
January 2025
Normandy University, ENSICAEN, UNICAEN, CNRS, LCMT, 6 Bd du Maréchal Juin, 14050 Caen, France.
Light-emitting electrochemical cells (LECs) are an attractive technology in the field of solid state light devices (SSLDs) as their simple architectures allow the preparation of cost-effective lighting devices. Consequently, low-cost and sustainable emitters are highly desirable. Transition metal complexes are attractive in this field as they have been proved to possess compatible optoelectronic properties.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States.
In two-dimensional (2D) chiral metal-halide perovskites (MHPs), chiral organic spacers induce structural chirality and chiroptical properties in the metal-halide sublattice. This structural chirality enables reversible crystalline-glass phase transitions in (-NEA)PbBr, a prototypical chiral 2D MHP where NEA represents 1-(1-naphthyl)ethylammonium. Here, we investigate two distinct spherulite states of (-NEA)PbBr, exhibiting either radial-like or stripe-like banded patterns depending on the annealing conditions of the amorphous film.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!